Discretization and interpolation of curves are two frequently adopted practices when machining complex curves using computer numerically controlled (CNC) machines. Both practices stem from the need to sample curves at discrete time intervals corresponding to the sampling period of the CNC machine. This paper proposes new techniques for discretization and interpolation that account for the change of tool orientations in five-axis machining. First, the method for discretization proposed in this paper is based on sampling the curves such that specified contour, feedrate, and orientation errors are not exceeded. Second, the interpolator proposed in this paper will be able to avoid excessive angular speeds arising from sampling the curves based on the feedrate alone. [S1087-1357(00)01401-5]
Discretization and interpolation of curves are two frequently adopted practices when machining complex curves using computer numerically controlled (CNC) machines. Both practices stem from the need to sample curves at discrete time intervals corresponding to the sampling period of the CNC machine. This paper proposes new techniques for discretization and interpolation that account for the change of tool orientations in five-axis machining. Firstly, the method for discretization proposed in this paper is based on sampling the curves such that specified contour, feedrate, and orientation errors are not exceeded. Secondly, the interpolator proposed in this paper will be able to avoid excessive angular velocities arising from sampling the curves based on the feedrate alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.