Benzodiazepines make up a class of psychoactive drugs that act as allosteric co-activators of the inhibitory GABA A receptor. These drugs are useful for the treatment of several psychiatric disorders but also hold considerable abuse liability. Despite the common use and misuse of benzodiazepines, the mechanisms through which these drugs exert their reinforcing effects remain incompletely understood. Transient phasic increases in dopamine levels are believed to play an important role in defining the reinforcing properties of drugs of abuse, and we recently demonstrated that systemic administration of benzodiazepines increased the frequency of these events but concomitantly reduced their amplitude. This observation provides insight into the pharmacological effects of benzodiazepines on dopamine signaling, but the processes through which benzodiazepines drive changes in phasic dopamine signals remain unclear. In these studies, we investigated the mechanisms through which benzodiazepines may reduce the phasic dopamine transient amplitude. We tested the effect of the benzodiazepine diazepam and the GABA A agonist muscimol on evoked dopamine release from nucleus accumbens brain slices using fast scan cyclic voltammetry. We found that both diazepam and muscimol reduce dopamine release and that reductions in dopamine release following GABA A receptor activation can be blocked by co-application of a GABA B receptor antagonist. These results suggest that activation of GABA A receptors in the nucleus accumbens decreases dopamine release by disinhibition of local GABA signaling and subsequent activation of GABA B receptors. Overall, this work provides a putative mechanism through which benzodiazepines reduce the amplitude of phasic dopamine release in vivo.
The reinforcing efficacy of cocaine is largely determined by its capacity to inhibit the dopamine transporter (DAT), and emerging evidence suggests that differences in cocaine potency are linked to several symptoms of cocaine use disorder. Despite this evidence, the neural processes that govern cocaine potency in vivo remain unclear. In male rats, we used chemogenetics with intra-VTA microinfusions of the agonist clozapine-n-oxide to bidirectionally modulate dopamine neurons. Using ex vivo fast scan cyclic voltammetry, pharmacological probes of the DAT, biochemical assessments of DAT membrane availability and phosphorylation, and cocaine self-administration, we tested the effects of chemogenetic manipulations on cocaine potency at distal DATs in the nucleus accumbens as well as the behavioral economics of cocaine self-administration. We discovered that chemogenetic manipulation of dopamine neurons produced rapid, bidirectional modulation of cocaine potency at DATs in the nucleus accumbens. We then provided evidence that changes in cocaine potency are associated with alterations in DAT affinity for cocaine and demonstrated that this change in affinity coincides with DAT conformation biases and changes in DAT phosphorylation state. Finally, we showed that chemogenetic manipulation of dopamine neurons alters cocaine consumption in a manner consistent with changes in cocaine potency at distal DATs. Based on the spatial and temporal constraints inherent to our experimental design, we posit that changes in cocaine potency are driven by alterations in dopamine neuron activity. When considered together, these observations provide a novel mechanism through which GPCRs regulate cocaine's pharmacological and behavioral effects.
While the co-morbidity between metabolic and psychiatric behaviors is well-established, the mechanisms are poorly understood, and exposure to early life adversity (ELA) is a common developmental risk factor. ELA is associated with altered insulin sensitivity and poor behavioral inhibition throughout life, which seems to contribute to the development of metabolic and psychiatric disturbances in the long term. We hypothesize that a genetic background associated with higher fasting insulin interacts with ELA to influence the development of executive functions (e.g., impulsivity in young children). We calculated the polygenic risk scores (PRSs) from the genome-wide association study (GWAS) of fasting insulin at different thresholds and identified the subset of single nucleotide polymorphisms (SNPs) that best predicted peripheral insulin levels in children from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort [N = 467; pt– initial = 0.24 (10,296 SNPs), pt– refined = 0.05 (57 SNPs)]. We then calculated the refined PRS (rPRS) for fasting insulin at this specific threshold in the children from the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) cohort and investigated its interaction effect with adversity on an impulsivity task applied at 36 months. We found a significant effect of interaction between fasting insulin rPRS and adversity exposure predicting impulsivity measured by the Snack Delay Task at 36 months [β = −0.329, p = 0.024], such that higher PRS [β = −0.551, p = 0.009] was linked to more impulsivity in individuals exposed to more adversity. Enrichment analysis (MetaCoreTM) of the SNPs that compose the fasting insulin rPRS at this threshold was significant for certain nervous system development processes including dopamine D2 receptor signaling. Additional enrichment analysis (FUMA) of the genes mapped from the SNPs in the fasting insulin rPRS showed enrichment with the accelerated cognitive decline GWAS. Therefore, the genetic background associated with risk for adult higher fasting insulin moderates the impact of early adversity on childhood impulsivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.