Recent evidence suggests that the hypocretin-orexin system participates in the regulation of reinforcement processes. The current studies examined the extent to which hypocretin neurotransmission regulates behavioral and neurochemical responses to cocaine, and behavioral responses to food reinforcement. These studies used a combination of fixed ratio, discrete trials, progressive ratio and threshold self-administration procedures to assess whether the hypocretin 1 receptor antagonist, SB-334867, reduces cocaine self-administration in rats. Progressive ratio sucrose self-administration procedures were also used to assess the extent to which SB-334867 reduces responding to a natural reinforcer in food-restricted and food-sated rats. Additionally, these studies used microdialysis and in vivo voltammetry in rats to examine whether SB-334867 attenuates the effects of cocaine on dopamine signaling within the nucleus accumbens core. Furthermore, in vitro voltammetry was used to examine whether hypocretin knockout mice display attenuated dopamine responses to cocaine. Results indicate that when SB-334867 was administered peripherally or within the ventral tegmental area, it reduced the motivation to self-administer cocaine and attenuated cocaine-induced enhancement of dopamine signaling. SB-334867 also reduced the motivation to self-administer sucrose in food-sated but not food-restricted rats. Finally, hypocretin knockout mice displayed altered baseline dopamine signaling and reduced dopamine responses to cocaine. Combined, these studies suggest that hypocretin neurotransmission participates in reinforcement processes, likely through modulation of the mesolimbic dopamine system. Additionally, the current observations suggest that the hypocretin system may provide a target for pharmacotherapies to treat cocaine addiction.
Homer proteins are integral to the assembly of proteins regulating glutamate signaling and synaptic plasticity. Constitutive Homer2 gene deletion [knock-out (KO)] and rescue with adeno-associated viral (AAV) transfection of Homer2b was used to demonstrate the importance of Homer proteins in neuroplasticity produced by repeated ethanol (EtOH) administration. Homer2 KO mice avoided drinking high concentrations of EtOH and did not develop place preference or locomotor sensitization after repeated EtOH administration. The deficient behavioral plasticity to EtOH after Homer2 deletion was paralleled by a lack of augmentation in the rise in extracellular dopamine and glutamate elicited by repeated EtOH injections. The genotypic differences in EtOH-induced change in behavior and neurochemistry were essentially reversed by AAV-mediated transfection of Homer2b into accumbens cells including, differences in EtOH preference, locomotor sensitization, and EtOH-induced elevations in extracellular glutamate and dopamine. These data demonstrate a necessary and active role for accumbens Homer2 expression in regulating EtOH-induced behavioral and cellular neuroplasticity.
The mesolimbic dopamine system is believed to be a pathway that processes rewarding information. While previous studies have also implicated a general role for dopamine in punishment and its avoidance, the precise nature of subsecond dopamine release during these phenomena remains unknown. Here, we used fast-scan cyclic voltammetry to investigate whether subsecond dopamine release events in the nucleus accumbens encode cues predicting the avoidance of punishment during behavior maintained in a signaled footshock avoidance procedure. In this task, rats could initiate an avoidance response by pressing a lever within a warning period, preventing footshock. Alternatively, once footshocks commenced, animals could initiate an escape response by pressing the lever, terminating footshock. This design allowed us to assess subsecond dopamine release events during the presentation of a warning signal, safety periods and two distinct behavioral responses. We found that release consistently increased upon presentation of the warning signal in a manner that reliably predicted successful punishment avoidance. We also observed subsecond dopamine release during the safety period, as occurs following the receipt of reward. Conversely, we observed a decrease in release at the warning signal during escape responses. Because of this finding, we next assessed dopamine release in a conditioned fear model. As seen during escape responses, we observed a time-locked decrease in dopamine release upon presentation of a cue conditioned to inescapable footshock. Together, these data show that subsecond fluctuations in mesolimbic dopamine release predict when rats will successfully avoid punishment and differentially encode cues related to aversive outcomes.
Recent attempts to model the addiction process in rodents have focused on cocaine self-administration procedures that provide extended daily access. Such procedures produce a characteristic loading phase during which blood levels rapidly rise and then are maintained within an elevated range for the duration of the session. The present experiments tested the hypothesis that multiple fastrising spikes in cocaine levels contribute to the addiction process more robustly than constant, maintained drug levels. Here, we compared the effects of various cocaine self-administration procedures that produced very different patterns of drug intake and drug dynamics on Pmax, a behavioral economic measure of the motivation to self-administer drug. Two groups received intermittent access (IntA) to cocaine during daily 6-h sessions. Access was limited to twelve 5-min trials that alternated with 25-min timeout periods, using either a hold-down procedure or a fixed ratio 1 (FR1). Cocaine levels could not be maintained with this procedure; instead the animals experienced 12 fast-rising spikes in cocaine levels each day. The IntA groups were compared with groups given 6-h FR1 long access and 2-h short access sessions and two other control groups. Here, we report that cocaine self-administration procedures resulting in repeatedly spiking drug levels produce more robust increases in Pmax than procedures resulting in maintained high levels of cocaine. These results suggest that rapid spiking of brain-cocaine levels is sufficient to increase the motivation to self-administer cocaine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.