The mesolimbic dopamine system is believed to be a pathway that processes rewarding information. While previous studies have also implicated a general role for dopamine in punishment and its avoidance, the precise nature of subsecond dopamine release during these phenomena remains unknown. Here, we used fast-scan cyclic voltammetry to investigate whether subsecond dopamine release events in the nucleus accumbens encode cues predicting the avoidance of punishment during behavior maintained in a signaled footshock avoidance procedure. In this task, rats could initiate an avoidance response by pressing a lever within a warning period, preventing footshock. Alternatively, once footshocks commenced, animals could initiate an escape response by pressing the lever, terminating footshock. This design allowed us to assess subsecond dopamine release events during the presentation of a warning signal, safety periods and two distinct behavioral responses. We found that release consistently increased upon presentation of the warning signal in a manner that reliably predicted successful punishment avoidance. We also observed subsecond dopamine release during the safety period, as occurs following the receipt of reward. Conversely, we observed a decrease in release at the warning signal during escape responses. Because of this finding, we next assessed dopamine release in a conditioned fear model. As seen during escape responses, we observed a time-locked decrease in dopamine release upon presentation of a cue conditioned to inescapable footshock. Together, these data show that subsecond fluctuations in mesolimbic dopamine release predict when rats will successfully avoid punishment and differentially encode cues related to aversive outcomes.
We report enduring consequences of THC+CBD use on critical relapse circuitry and synaptic physiology in NAcore following rat self-administration and provide the first report of cue- and stress-induced reinstatement with this model.
Cannabis sativa preparations are the most consumed illicit drugs for recreational purposes worldwide, and the number of people seeking treatment for cannabis use disorder has dramatically increased in the last decades. Due to the recent decriminalization or legalization of cannabis use in the Western Countries, we may predict that the number of people suffering from cannabis use disorder will increase. Despite the increasing number of cannabis studies over the past two decades, we have gaps of scientific knowledge pertaining to the neurobiological consequences of long-term cannabis use. Moreover, no specific treatments for cannabis use disorders are currently available.
In this review, we explore new research that may help fill these gaps. We discuss and provide a solution to the experimental limitation of a lack of rodent models of THC self-administration, and the importance this model can play in understanding the neurobiology of relapse and in providing a biological rationale for potential therapeutic targets. We also focus our attention on glial cells, commenting on recent preclinical evidence suggesting that alterations in microglia and astrocytes might contribute to the detrimental effects associated with cannabis abuse. Finally, due to the worrisome prevalence rates of cannabis use during pregnancy, we highlight the associations between cannabis use disorders during pregnancy and congenital disorders, describing the possible neuronal basis of vulnerability at molecular and circuit level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.