There is a special interaction between the environment, soil microorganisms, and tea plants, which constitute the ecosystem of tea plantations. Influenced by environmental factors and human management, the changes in soil microbial community affected the growth, quality, and yield of tea plants. However, little is known about the composition and structure of soil bacterial and fungal communities in 100-year-old tea plantations and the mechanisms by which they are affected. In this regard, we characterized the microbiome of tea plantation soils by considering the bacterial and fungal communities in 448 soil samples from 101 ancient tea plantations in eight counties of Lincang city, which is one of the tea domestication centers in the world. 16S and Internal Transcribed Spacer (ITS) rRNA high-throughput amplicon sequencing techniques were applied in this study. The results showed that the abundance, diversity, and composition of the bacterial and fungal communities have different sensitivity with varying pH, altitude, and latitude. pH and altitude affect soil microbial communities, and bacterial communities are more sensitive than fungi in terms of abundance and diversity to pH. The highest α-diversity of bacterial communities is shown in the pH 4.50–5.00 and 2,200-m group, and fungi peaked in the pH 5.00–5.50 and 900-m group. Because of environmental and geographical factors, all microbes are similarly changing, and further correlations showed that the composition and structure of bacterial communities are more sensitive than fungal communities, which were affected by latitude and altitude. In conclusion, the interference of anthropogenic activities plays a more important role in governing fungal community selection than environmental or geographical factors, whereas for the bacterial community, it is more selective to environment adaptation than to adaptation to human activities.
Taxaceae and Cephalotaxaceae are the two economically important conifer families. Over the years there has been much controversy over the issue of merging these families. The position of Amentotaxus and Torreya is also ambiguous. Some authors consider them closer to Taxaceae while others deemed them to fit within Cephalotaxaceae. Still, others prefer to raise them to their own tribe. Different morphological, anatomical, embryological and phylogenetic evidence supports one or the other view, making the precise delineation between them unresolved. Here we used an RNAseq-based approach to obtain orthologous genes across the selected species to reconstruct a more robust phylogeny of these families. A total of 233.123 million raw reads were de novo assembled to generate nine different transcript assemblies for the corresponding species. Of the 940 191 assembled transcripts across nine species, we generated 409 734 unigenes, which were clustered into orthologous groups. A total of 331 singlecopy complete orthologous groups were selected for phylogenetic analysis. Maximum-likelihood, maximum-parsimony and Bayesian phylogenetic trees showed a sister relationship between Taxaceae and Cephalotaxaceae. Our analysis supports their distinctiveness at the family level and also shows that Amentotaxus and Torreya fit within Cephalotaxaceae.
Unequal utilization of synonymous codons is a well-known phenomenon among living organisms. This phenomenon plays a major role in the enhancement of the accuracy and efficiency of translation. Gymnosperms are rarely paid attention in this aspect. Understanding the degree of and determining the forces influencing codon usage bias (CUB) in Taxus contorta, an endangered Himalayan gymnosperm, will prove useful in interpreting the evolutionary characteristics of this species. Using RNAseq data, 93 790 assembled transcripts were clustered into 32 701 unigenes. Around 13 061 full-length sequences were utilized for the analysis of CUB. Compositional properties showed that GC-content ranged from 28.76% to 65.22%, with an average value of 44.28%, suggesting an AT-rich genome. The mean effective number of codons (ENC) value revealed that CUB is not strong in T. contorta. The preferred codons tended to be A/U ending, whereas the avoided codons tended to be G/C ending. A P2 index of 0.54 and a Mutation Responsive Index (MRI) value of –0.02 in addition to the results revealed by the neutrality, ENC, and parity plots showed that natural selection is a predominating factor governing CUB. Mutational pressure, gene length, hydropathiciy, aromaticity, and nucleotide composition influence CUB weakly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.