We report the unique actuation characteristics of moisture-driven, fully reversible soft biopolymer films fabricated from Bombyx mori silk. The instantaneous actuation is driven by the water vapor induced stress gradient generated across the thickness of the film, and it possesses subsecond response and actuation times. The excellent durability and consistent performance of the film without any noticeable fatigue are established by subjecting it to more than a thousand continuous actuation cycles. The weight-lifting capability of the film is fascinating, where a few tens of micrograms of water generate a colossal force required to lift hundreds of milligrams of weight. Several other potential uses of silk fibroin based soft actuators, such as an intelligent textile layer with the crescent-shaped windows that open on perspiring skin and an autonomous crawler, are also demonstrated. Interestingly, even moisture emanating from the human palm triggers the ultrafast actuation process. These silk films are fabricated using a simple facile solution-casting technique, which can be scaled up with relative ease.
We present the water vapor-induced swelling and the emergence of a penetrant-induced glass-like transition in the substrate-supported glassy chitosan thin films. The time evolution of the film thickness under different levels of relative humidity conditions is measured in real-time using a spectroscopic ellipsometer equipped with a humidity cell. In a dry film, the network of chitosan chains is in a glassy state, and upon exposure to water vapor, initially, the film swells by Fickian diffusion of water molecules, which triggers the structural relaxations of the chains. Under higher humidity conditions, a relatively slower evolution of thickness succeeds the initial rapid swelling due to the non-Fickian sorption of water molecules. The swelling characteristics of the polymer films are accounted for by considering the diffusion−relaxation mechanism of chains in the presence of smaller penetrant molecules. The penetrant-induced glass-like transition (P g ), where the polymer film isothermally transits from a glassy to a rubbery state, is determined for pristine and cross-linked chitosan films. P g is determined from the abrupt change in the rate of swelling observed upon increasing the relative humidity. Chemical crosslinking has an evident influence on the penetrant-induced glass-like transition of the chitosan films. P g was found to rise sharply for stiffer films with higher cross-linking density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.