The ability of human CMV (HCMV) to enter and establish a latent infection in myeloid cells is crucial for survival and transmission in the human population. Initial pathogen binding and entry triggers a number of antiviral responses, including the activation of proapoptotic cell death pathways, which must be countered during latency establishment. However, mechanisms responsible for a prosurvival state in myeloid cells upon latent HCMV infection remain completely undefined. We hypothesized that the cellular antiapoptotic machinery must be initially activated by HCMV to promote early survival events upon entry. Here we show that HCMV transiently protects nonpermissive myeloid cells from chemical and virus entry induced cell death by up-regulating a key myeloid cell survival gene, myeloid cell leukemia (MCL)-1 protein.The induction of MCL-1 expression was independent of viral gene expression but dependent on activation of the ERK-MAPK pathway by viral glycoprotein B. Inhibition of ERK-MAPK signaling, inhibition of HCMV fusion, antibody-mediated neutralization of glycoprotein B signaling or expression of a shRNA against MCL-1 all correlated with increased cell death in response to virus infection or chemical stimulation. Finally we show that activation of ERK-MAPK signaling impacts on long-term latency and reactivation in hematopoietic cells. Thus, HCMV primes myeloid cells for from the initial virus-cell encounter. Given the importance of ERK and MCL-1 for myeloid cell survival, the successful establishment of HCMV latency in myeloid progenitors begins at the point of virus entry.
Dogs are known to be the oldest animals domesticated by humans. Although many studies have examined wolf domestication, the geographic and temporal origin of this process is still being debated. To address this issue, our study sheds new light on the early stages of wolf domestication during the Magdalenian period (16–14 ka cal BP) in the Hegau Jura region (Southwestern Germany and Switzerland). By combining morphology, genetics, and isotopes, our multidisciplinary approach helps to evaluate alternate processes driving the early phases of domestication. The isotope analysis uncovered a restricted, low δ15N protein diet for all analyzed Gnirshöhle specimens, while morphological examinations and phylogenetic relationships did not unequivocally assign them to one or the other canid lineage. Intriguingly, the newly generated mitochondrial canid genomes span the entire genetic diversity of modern dogs and wolves. Such high mitochondrial diversity could imply that Magdalenian people tamed and reared animals originating from different wolf lineages. We discuss our results in light of three ecological hypotheses and conclude that both domestication and the existence of a specialized wolf ecomorph are highly probable. However, due to their proximity to humans and a restricted diet, we propose domestication as the most likely scenario explaining the patterns observed herein.
Smallpox, caused by the variola virus (VARV), was a highly virulent disease with high mortality rates causing a major threat for global human health until its successful eradication in 1980. Despite previously published historic and modern VARV genomes, its past dissemination and diversity remain debated. To understand the evolutionary history of VARV with respect to historic and modern VARV genetic variation in Europe, we sequenced a VARV genome from a well-described eighteenth-century case from England (specimen P328). In our phylogenetic analysis, the new genome falls between the modern strains and another historic strain from Lithuania, supporting previous claims of larger diversity in early modern Europe compared to the twentieth century. Our analyses also resolve a previous controversy regarding the common ancestor between modern and historic strains by confirming a later date around the seventeenth century. Overall, our results point to the benefit of historic genomes for better resolution of past VARV diversity and highlight the value of such historic genomes from around the world to further understand the evolutionary history of smallpox as well as related diseases.
This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.
Museum specimens and histologically fixed material are valuable samples for the study of historical soft tissues and represent a possible pathogen-specific source for retrospective molecular investigations. However, current methods for molecular analysis are inherently destructive, posing a dilemma between performing a study with the available technology, thus damaging the sample, and conserving the material for future investigations. Here the authors present the first tests of a non-destructive alternative that facilitates genetic analysis of fixed wet tissues while avoiding tissue damage. The authors extracted DNA from the fixed tissues as well as their embedding fixative solution, to quantify the DNA that was transferred to the liquid component. The results show that human historical DNA can be retrieved from the fixative material of medical specimens and provide new options for sampling valuable collections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.