With over 32,000 extant species 1 , teleost fishes comprise the majority of vertebrate species. Their taxonomic diversity is matched by extensive genetic and phenotypic variation, including novel immunological strategies. Although the functionality of the adaptive immune system has been considered to be conserved since its emergence in the ancestor of all jawed vertebrates 2,3 , fundamental modifications of the immune gene repertoire have recently been reported in teleosts [4][5][6][7] . One of the most dramatic changes has occurred in Atlantic cod (Gadus morhua), involving complete loss of the MHC II pathway that is otherwise responsible for the detection of bacterial pathogens in vertebrates 4 . Moreover, this loss is accompanied by a substantially enlarged repertoire of MHC I genes, which normally encode molecules for protection against viral pathogens. It has thus been hypothesized that the expanded MHC I repertoire of cod evolved as a compensatory mechanism, whereby broader MHC I functionality makes up for the initial loss of MHC II (refs. 4,6). However, the questions of how and when MHC II was lost relative to the MHC I expansion, and whether these genomic modifications are causally related, have so far remained unresolved.As key components of the vertebrate adaptive immune system, the complex MHC pathways and their functionality are now well characterized 8-10 , but less is known about the causes of MHC copy number variation, which poses an immunological tradeoff 11,12 . Although an increase in the number of MHC genes facilitates pathogen detection, it will also decrease the number of circulating T cells [13][14][15][16] , resulting in an immune system that can detect a large number of pathogens at the expense of being less efficient in removing them. The evolution of MHC copy numbers is therefore likely driven toward intermediate optima determined by a tradeoff between detection and elimination of pathogens-as suggested by selection for 5-10 copies inferred in case studies of fish 17,18 and birds 19 . Because pathogen load and the associated selective pressures vary between habitats, the optimal number of MHC copies depends on the environment [20][21][22] . As a result, interbreeding between different locally adapted populations is expected to produce hybrids with excess (above optimal) MHC diversity that are characterized by T cell deprivation and low fitness. This process would introduce postzygotic reproductive isolation and promote reinforcement of premating isolation between the populations. Consequently, MHC genes have been suggested to have an important role in speciation 22,23 , but, to our knowledge, this role has never been tested comparatively in a macroevolutionary context.Here we report comparative analyses of 76 teleost species, of which 66 were sequenced to produce partial draft genome assemblies, including 27 representatives of cod-like fishes within the order Gadiformes. First, we use phylogenomic analysis to resolve standing controversy regarding early-teleost divergences and to firmly ...
A fundamental problem for the evolution of pregnancy, the most specialized form of parental investment among vertebrates, is the rejection of the nonself-embryo. Mammals achieve immunological tolerance by down-regulating both major histocompatibility complex pathways (MHC I and II). Although pregnancy has evolved multiple times independently among vertebrates, knowledge of associated immune system adjustments is restricted to mammals. All of them (except monotremata) display full internal pregnancy, making evolutionary reconstructions within the class mammalia meaningless. Here, we study the seahorse and pipefish family (syngnathids) that have evolved male pregnancy across a gradient from external oviparity to internal gestation. We assess how immunological tolerance is achieved by reconstruction of the immune gene repertoire in a comprehensive sample of 12 seahorse and pipefish genomes along the “male pregnancy” gradient together with expression patterns of key immune and pregnancy genes in reproductive tissues. We found that the evolution of pregnancy coincided with a modification of the adaptive immune system. Divergent genomic rearrangements of the MHC II pathway among fully pregnant species were identified in both genera of the syngnathids: The pipefishes (Syngnathus) displayed loss of several genes of the MHC II pathway while seahorses (Hippocampus) featured a highly divergent invariant chain (CD74). Our findings suggest that a trade-off between immunological tolerance and embryo rejection accompanied the evolution of unique male pregnancy. That pipefishes survive in an ocean of microbes without one arm of the adaptive immune defense suggests a high degree of immunological flexibility among vertebrates, which may advance our understanding of immune-deficiency diseases.
The mode and extent of rapid evolution and genomic change in response to human harvesting are key conservation issues. Although experiments and models have shown a high potential for both genetic and phenotypic change in response to fishing, empirical examples of genetic responses in wild populations are rare. Here, we compare whole-genome sequence data of Atlantic cod (Gadus morhua) that were collected before (early 20th century) and after (early 21st century) periods of intensive exploitation and rapid decline in the age of maturation from two geographically distinct populations in Newfoundland, Canada, and the northeast Arctic, Norway. Our temporal, genome-wide analyses of 346,290 loci show no substantial loss of genetic diversity and high effective population sizes. Moreover, we do not find distinct signals of strong selective sweeps anywhere in the genome, although we cannot rule out the possibility of highly polygenic evolution. Our observations suggest that phenotypic change in these populations is not constrained by irreversible loss of genomic variation and thus imply that former traits could be reestablished with demographic recovery.
Effective population size (Ne) is a key parameter to understand evolutionary processes and the viability of endangered populations as it determines the rate of genetic drift and inbreeding. Low Ne can lead to inbreeding depression and reduced population adaptability. In this study, we estimated contemporary Ne using genetic estimators (LDNE, ONeSAMP, MLNE and CoNe) as well as a demographic estimator in a natural insular house sparrow metapopulation. We investigated whether population characteristics (population size, sex ratio, immigration rate, variance in population size and population growth rate) explained variation within and among populations in the ratio of effective to census population size (Ne/Nc). In general, Ne/Nc ratios increased with immigration rates. Genetic Ne was much larger than demographic Ne, probably due to a greater effect of immigration on genetic than demographic processes in local populations. Moreover, although estimates of genetic Ne seemed to track Nc quite well, the genetic Ne‐estimates were often larger than Nc within populations. Estimates of genetic Ne for the metapopulation were however within the expected range (
Supergenes are sets of genes that are inherited as a single marker and encode complex phenotypes through their joint action. They are identified in an increasing number of organisms, yet their origins and evolution remain enigmatic. In Atlantic cod, four megabase-scale supergenes have been identified and linked to migratory lifestyle and environmental adaptations. Here we investigate the origin and maintenance of these four supergenes through analysis of whole-genome-sequencing data, including a new long-read-based genome assembly for a non-migratory Atlantic cod individual. We corroborate the finding that chromosomal inversions underlie all four supergenes, and we show that they originated at different times between 0.40 and 1.66 million years ago. We reveal gene flux between supergene haplotypes where migratory and stationary Atlantic cod co-occur and conclude that this gene flux is driven by gene conversion, on the basis of an increase in GC content in exchanged sites. Additionally, we find evidence for double crossover between supergene haplotypes, leading to the exchange of an ~275 kilobase fragment with genes potentially involved in adaptation to low salinity in the Baltic Sea. Our results suggest that supergenes can be maintained over long timescales in the same way as hybridizing species, through the selective purging of introduced genetic variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.