Most frequently used models for modeling and forecasting periodic climatic time series do not have the capability of handling periodic variability that characterizes it. In this paper, the Fourier Autoregressive model with abilities to analyze periodic variability is implemented. From the results, FAR(1), FAR(2) and FAR(2) models were chosen based on Periodic Autocorrelation function (PeACF) and Periodic Partial Autocorrelation function (PePACF). The coefficients of the tentative model were estimated using a Discrete Fourier transform estimation method. FAR(1) models were chosen as the optimal model based on the smallest values of Periodic Akaike (PAIC) and Bayesian Information criteria (PBIC). The residual of the fitted models was diagnosed to be white noise. The in-sample forecast showed a close reflection of the original rainfall series while the out-sample forecast exhibited a continuous periodic forecast from January 2019 to December 2020 with relatively small values of Periodic Root Mean Square Error (PRMSE), Periodic Mean Absolute Error (PMAE) and Periodic Mean Absolute Percentage Error (PMAPE). The comparison of FAR(1) model forecast with AR(3), ARMA(2,1), ARIMA(2,1,1) and SARIMA( 1,1,1)(1,1,1)12 model forecast indicated that FAR(1) outperformed the other models as it exhibited a continuous periodic forecast. The continuous monthly periodic rainfall forecast indicated that there will be rapid climate change in Nigeria in the coming yearly and Nigerian Government needs to put in place plans to curtail its effects.
The use of hard drugs (Alcohol, cocaine and Nicotine) has remained the censorious issue globally and in Nigeria. The use of hard drugs and tobacco smoking is common in the stage of adolescence and youth life, which is a deterrent to education and career advancement. Hence, this study looks into socio-demographic factors that influence the use of hard drugs and tobacco smoking among teenagers between the ages of 15 years to 19 years. To achieve this objective, a cross-sectional data was used and a secondary data was obtained from DHS - National Demographic and Health Surveys (NDHS) from the survey year 2018. Some Bayesian models were developed and Conditional Autoregressive (CAR) model with random walk 1 (RW1) was the best model. The study unveiled a positive significant association of settlement, previous place of residence, education attainment, religion, ethnicity, literacy with reported use of hard drugs amongst teenagers of reproductive age.
The occurrence of COVID-19 has given rise to dreadful medical difficulties due to its hyper-endemic effects on the human population. This made it fundamental to model and forecast COVID-19 pervasiveness and mortality to control the spread viably.The COVID-19 data used was from February, 28, 2020 to March 1, 2021. ARIMA(1,2,0) was selected for modeling COVID-19 confirmed and ARIMA (1,1,0) for death cases. The model was shown to be adequate for modeling and forecasting Nigerian COVID-19 data based on the ARIMA model building results. The forecasted values from the two models indicated Nigerian COVID-19 cumulative confirmed and death case continues to rise and maybe in-between 189,019-327,426 and interval 406-3043, respectively in the next 3 months (May 30, 2021). The ARIMA models forecast indicated an alarming rise in Nigerian COVID-19 confirmed and death cases on a daily basis.The findings indicated that effective treatment strategies must be put in place, the health sector should be monitored and properly funded. All the protocols and restrictions put in place by the NCDC, Nigeria should be clung to diminish the spread of the pandemic and possible mortality before immunizations that can forestall the infection is developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.