Objective: Fatigue associated with malignant conditions and their treatments is a disabling condition. This trial assessed the anti-fatigue effects of melatonin coadministration during adjuvant treatment of patients with the breast cancer. Material and Methods: Patients with breast cancer were randomly assigned to receive melatonin or placebo during adjuvant chemotherapy and radiotherapy. Thirty-seven patients were randomly enrolled in each group. The mean ages of patients in the intervention and control groups were 50.47 ± 10.79 and 46.05 ± 10.55 years, respectively ( P = .223). The intervention group received oral melatonin (18 mg/day) from 1 week before until 1 month after the adjuvant radiotherapy. The level of fatigue was assessed before and after intervention using Brief Fatigue Inventory (BFI) in both groups. To analyze data, the Student’s t-test and the Chi-square test were used at a significance level of P ≤ .05. Results: The BFI score was similar before the intervention in both groups, however, after the intervention, it was significantly lower in the melatonin group ( P < .001). Moreover, the frequency of severe fatigue in the melatonin group was significantly lower than in the placebo group after intervention (42.1% vs 83.3%, P < .001). Conclusion: Coadministration of melatonin during adjuvant chemotherapy and radiotherapy of women with breast cancer decreased the levels of fatigue associated with the malignant condition and its treatments.
In this paper, the effect of the temperature change on the vibration frequency of mono-layer graphene sheet embedded in an elastic medium are studied. Using the nonlocal elasticity theory, the governing equations are derived for single-layered graphene sheets. Using Levy and Navier solutions, analytical frequency equations for single-layered graphene sheets are obtained. Using Levy solution, the frequency equation and mode shapes of orthotropic rectangular nanoplate are considered for three cases of boundary conditions. The obtained results are subsequently compared with valid result reported in the literature. The effects of the small scale, temperature change, different boundary conditions, Winkler and Pasternak foundations, material properties and aspect ratios on natural frequencies are investigated. It has been shown that the non-dimensional frequency decreases with increasing temperature change. The present analysis results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the nanoplates.
Background: Colon cancer is one of the most common malignancies and the fourth leading cause of cancerrelated mortality in the world. Colibactin, which is synthesized by the pks genomic island of E. coli interfere with the eukaryotic cell cycle. Cinnamon has an antimicrobial effect and considered as a colon cancer-preventing agent. The aim of the study was to evaluate the effects of cinnamon extract and cinnamaldehyde on clbB gene expression and biofilm formation in clinical isolates of E. coli. Methods: Thirty E. coli carrying pks gene were isolated from the colon cancer patients, inflammatory bowel disease and healthy subjects. Antibiotic susceptibility was evaluated by disk diffusion method and the minimum inhibitory concentration of cinnamon essential oil and cinnamaldehyde by microdilution broth method. In vitro biofilm formation of E.coli isolates was monitored using a microtiter plate method. The presence of clbB, clbA and clbQ genes in E.coli isolates were evaluated by PCR. The effect of cinnamaldehyde and cinnamon essential oil on clbB gene expression was evaluated by Real-Time PCR. Results: The highest antibiotic resistance was obtained with 94.4% for ticarcillin-clavulanic acid, azithromycin, amoxicillin, and amikacin. The MIC for all clinical isolates was 32 μl/ml of cinnamon essential oil and the MIC of cinnamaldehyde was between 0.00002 to 0.03 μl/ml. After exposure of isolates to cinnamon extract and cinnamaldehyde, 40 and 13.3% were weakly biofilm producers, respectively. The frequencies of clbB, clbA, and clbQ genes were 23.3, 23.3, and 26.7%, respectively. The expression of clbB gene in the presence of the Sub-MIC concentration of cinnamon essential oil and cinnamaldehyde was decreased in 8 isolates compared to untreated isolates (p-value < 0.05). Conclusions: The antibacterial activity of cinnamaldehyde and cinnamon essential oil allows the use of these herbal compounds for treatment or supplements in infections caused by E. coli and in patients with suspected colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.