Phospholipase A2 (PLA2) enzymes are critical regulators of prostaglandin and leukotriene synthesis and can directly modify the composition of cellular membranes. PLA2 enzymes release fatty acids and lysophospholipids, including the precursor of platelet-activating factor, PAF, from phospholipids. Free fatty acids, eicosanoids, lysophospholipids and PAF are potent regulators of inflammation, reproduction and neurotoxicity. The physiological roles of the various forms of PLA2 are not well defined. The cytosolic form, cPLA2, preferentially releases arachidonic acid from phospholipids and is regulated by changes in intracellular calcium concentration. We have now created 'knockout' (cPLA2-/-) mice that lack this enzyme, in order to evaluate its physiological importance. We find that cPLA2-/- mice develop normally, but that the females produce only small litters in which the pups are usually dead. Stimulated peritoneal macrophages from cPLA2-/- animals did not produce prostaglandin E2 or leukotriene B4 or C4. After transient middle cerebral artery occlusion, cPLA2-/- mice had smaller infarcts and developed less brain oedema and fewer neurological deficits. Thus cPLA2 is important for macrophage production of inflammatory mediators, fertility, and in the pathophysiology of neuronal death after transient focal cerebral ischaemia.
All the world is involved in the COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus is a positive-sense RNA and has an envelope. There is no specific drug for this disease and treatment methods are limited. Malnutrition and electrolyte imbalance can make dysfunction in the immune system and impairment of the immune system causes increasing the risk of infection. Understanding the aspects of biological features of the virus will help the development of diagnostic tests, pharmacological therapies, and vaccines. Here, we review and discuss increasing and decreasing some trace elements and imbalance of serum and plasma electrolytes involving in COVID-19.
Recently, special attention has been paid to marine origin compounds such as carbohydrates, peptides, lipids, and carotenoids, which are extracted from microalgae and have anticancer, anti-inflammatory, antimicrobial (e.g., anti-COVID-19 activity), and antioxidant properties in biomedicine and pharmaceutical biotechnology. In addition, these photosynthetic marine microorganisms have several applications in biotechnology and are suitable hosts for the production of recombinant proteins/peptides, such as monoclonal antibodies and vaccines. Silica-based nanoparticles obtained from diatoms (a microalgae group) are used as drug delivery carriers owing to their biodegradability, easy functionalization, low cost, and simple features compared to synthetics, which make these agents proper alternatives for synthetic silica nanoparticles. Therefore, diatom-based nanoparticles are a viable option for the delivery of anti-cancer drugs and reducing the side-effects of cancer chemotherapy.
Mobile phones and Wi-Fi radiofrequency radiation are among the main sources of the exposure of the general population to radiofrequency electromagnetic fields (RF-EMF). Previous studies have shown that exposure of microorganisms to RF-EMFs can be associated with a wide spectrum of changes ranged from the modified bacterial growth to the alterations of the pattern of antibiotic resistance. Our laboratory at the nonionizing department of the Ionizing and Non-ionizing Radiation Protection Research Center has performed experiments on the health effects of exposure to animal models and humans to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons, magnetic resonance imaging, and Helmholtz coils. On the other hand, we have previously studied different aspects of the challenging issue of the ionizing or nonionizing radiation-induced alterations in the susceptibility of microorganisms to antibiotics. In this study, we assessed if the exposure to 900 MHz GSM mobile phone radiation and 2.4 GHz radiofrequency radiation emitted from common Wi-Fi routers alters the susceptibility of microorganisms to different antibiotics. The pure cultures of Listeria monocytogenes and Escherichia coli were exposed to RF-EMFs generated either by a GSM 900 MHz mobile phone simulator and a common 2.4 GHz Wi-Fi router. It is also shown that exposure to RF-EMFs within a narrow level of irradiation (an exposure window) makes microorganisms resistant to antibiotics. This adaptive phenomenon and its potential threats to human health should be further investigated in future experiments. Altogether, the findings of this study showed that exposure to Wi-Fi and RF simulator radiation can significantly alter the inhibition zone diameters and growth rate for L monocytogenes and E coli. These findings may have implications for the management of serious infectious diseases.
Probiotics are live microbial food supplements or their components, which have been shown to have beneficial effects on human health. Probiotics can be bacteria, molds, or yeasts, but most of them fall into the group known as lactic acid bacteria and are normally consumed in the form of yogurt, fermented milk, or other fermented foods. Data from clinical trials have shown contrasting effects and should be interpreted with caution. A large variety of potential beneficial effects have been reported including improvement of intestinal tract health, enhancing the immune system, reducing symptoms of lactose intolerance, decreasing the prevalence of allergy in susceptible individuals, reducing risk of certain cancers, treating colitis, lowering serum cholesterol concentrations, reducing blood pressure in hypertensives, and improving female urogenital infections and Helicobacter pylori infections. The aim of this article is to present a review of the current expanding knowledge of applications of utilizing probiotic microorganisms in the prevention and treatment of several diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.