Diabetes is one of the most common and challenging health problems. Studies in several nations show that polymorphisms within the transcription factor 7-like 2 genes could be associated with type 2 diabetes (T2D). Therefore, a case-control study was conducted to find the association between SNP rs7903146 and T2D in our population. The study consists of 110 patients referring to clinic and 80 healthy controls randomly selected based on WHO guideline. DNA was extracted from blood and genotyped by PCR-RFLP with specific primers to amplify a fragment for restriction enzyme (RsaI). A chi-square test was calculated to compare the proportions of genotypes or alleles. Using a logistic regression model, the odds ratio for risk of developing T2D was calculated with and without adjustment for age, sex, and BMI. The frequency of the T allele of rs7903146 (C/T) polymorphism was significantly higher in diabetic subjects (47.3%) compared to that in normal subjects (34.4%). Logistic regression analysis of the rs7903146 polymorphism showed that the odds ratio was 3.71(95% CI: 1.43-9.56; P: 0.008) for the TT genotype and 1.26 (95% CI: 0.67-2.39; P: 0.516) for the CT genotype when compared with the CC genotype. Odds ratio adjusted for age, sex, and BMI have shown similar results. The results show that rs7903146 of TCF7L2 gene is an important susceptibility gene for T2D mellitus in the province of Isfahan, Iran. Our results support the recent findings that rs7903146 of TCF7L2 gene is an important genetic risk factor for the development of T2D in multiple ethnic groups.
Background:Moringa peregrina (M. peregrina) is an important tropical tree recognized for its nutritional and medicinal properties. The objective of this study was to investigate the nutritional component in the leaves and seeds of the Persian M. peregrina (Forssk.) Fiori.Materials and Methods:The M. peregrina leaves and seeds of wild cultivated trees were collected from the areas of arid environment located in the South-East of the Iran. The leaves and seeds of M. peregrina were dried and grounded to a fine powder and kept in dark for the day of experiment. The acidic digested leaves and seeds were analyzed for Vitamins C and A, calcium, and potassium using atomic adsorption and flame emission spectrophotometer.Results:The analytical data revealed that the leaves and seeds of the Persian M. peregrina (Forssk.) Fiori contain sufficient amounts of Vitamin C: 83 ± 0.5 and 14 ± 0.6 mg/100 g/DW; and Vitamin A: 6.8 ± 0.7 and 24.8 ± 0.7 mg/100 g/DW, respectively. The elemental analysis in the leaves and seeds showed that the calcium content are 764.8 ± 1.6 and 1164.8 ± 43.4 mg/100 g/DW and for potassium content are 900.2 ± 14 and 572 ± 10 mg/100 g/DW, respectively.Conclusions:The nutritional characteristics of the Persian M. peregrina (Forssk.) Fiori, investigated in this study revealed that, daily use of leaves and seeds of this plant could significantly provide the recommended dietary allowance for the Vitamins C and A, and minerals, such as calcium and potassium.
The B-lymphocyte antigen (CD20) is a suitable target for single-stranded (ss) nucleic acid oligomer (aptamers). The aim of study was selection and characterization of a ssDNA aptamer against CD20 using Cell-Systematic Evolution of Ligands by Exponential Enrichment (Cell-SELEX). The cDNA clone of CD20 (pcDNA-CD20) was transfected to human embryonic kidney (HEK293T) cells. Ten rounds of Cell-SELEX was performed on recombinant HEK-CD20 cells. The final eluted ssDNA pool was amplified and ligated in T/A vector for cloning. The plasmids of positive clones were extracted, sequenced and the secondary structures of the aptamers predicted using DNAMAN® software. The sequencing results revealed 10 different types; three of them had the highest thermodynamic stability, named AP-1, AP-2 and AP-3. The AP-1 aptamer was the most thermodynamically stable one (ΔGAP-1 = −10.87 kcal/mol) with the highest binding affinity to CD20 (96.91 ± 4.5 nM). Since, the CD20 is a suitable target for recognition of B-Cell. The selected aptamers could be comparable to antibodies with many advantages. The AP-1, AP-2 and AP-3 could be candidate instead of antibodies for diagnostic and therapeutic applications in immune deficiency, autoimmune diseases, leukemia and lymphoma.
A promising strategy to carry genetic material to brain cells either in vitro or in vivo is using the LDL receptor (LDLr) on blood-brain barrier. LDLr naturally help to low density lipoproteins (LDL(S)) transporting across the BBB by endocytosis. Here we present the idea of using the LDLr-mediated pathway for transporting genetic material to brain cells. A tandem dimer Sequence of apoprotein-E (apoE) (141-150) conjugated to polylysine sequence was used as a novel DNA Delivery vector for transfecting of brain cells either in vitro or in vivo. DNA condensation occurs with this vector because electrostatic interaction between DNA and polylysine. The vector favors to protection of DNA from enzymatic degradation and also helps to DNA carrying in blood stream to reach BBB and transport it to brain cells and eventually help DNA expression in target cells. These results suggest a novel gene delivery vector for gene therapy of brain disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.