This investigation deals with the vibration analysis of a rotating tapered shaft in Functionally Graded Material (FGM). The dynamic system is modeled using the Timoshenko beam theory (FSDBT) with consideration of gyroscopic effect and rotary inertia. The equations of motion are expressed by the hierarchical finite element method based on bi-articulated boundary conditions. The material properties are continuously varied in the thickness direction of a hollow shaft according to the exponential law function (E-FGM). The presented model is validated by comparing the numerical results found with the available literature. Various analyses are carried out to determine the influence of taper angle and material distribution of the two extreme materials on the dynamic behavior of FGM conical rotors system.
This study relates the exact solution for free-vibration analysis of beams in material gradient (FGMs) subjected to the different conditions of support using the Euler Bernoulli theory (CBT). It is assumed that the material properties continuously change across the thickness of the beam according to the exponential function (E-FGM). The equations of motion are obtained by applying the principle of virtual works on beams and fundamental frequencies are found by solving the equations governing the eigenvalue problems. Numerical results are presented to describe the influence of the material on the fundamental frequencies of the beam for different state boundaries.
It is extremely difficult to measure the strain energy dissipated in each loading cycle, especially when the material suffers from low cycle fatigue under plastic strain. This paper attempts to simulate the dissipated strain energy of aluminum alloy 6061-T6 induced by the low cycle fatigue under an imposed plastic strain. Hence, an ANSYS numerical simulation was performed on the low cycle fatigue permitting to generate the hysteresis loops at failure of each cyclic plastic strain imposed on aluminum alloy 6061-T6. The area of the hysteresis loops was adopted to measure the dissipated strain energy. The simulation results show that the energy dissipated during loading gives a good measure of a material's residual strength, stiffness and capacity to resist further loading.
This paper investigates the dynamic stability of functionally graded material (FGM) beams, using the Timoshenko model with internal viscous damping distribution (DIVD). It is assumed that the material properties change continuously across the thickness direction of the beam, according to the power law function for the FGM (P-FGM). The governing equations of motion were developed by the Lagrange principle. Then, the finite element method was adopted to describe unamortized natural frequencies and the damped eigenfrequencies of the dynamic system. The numerical results were compared with those available in the literature. Illustrative examples were given to show the influence of internal damping distribution, material distribution and slenderness ratio on the dynamic stability margin of FGM Timoshenko beams. The research findings provide new insights into the dynamic stability of the FGM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.