This review focuses on how environmental factors through epigenetics modify disease risk and health outcomes. Major epigenetic events, such as histone modifications, DNA methylation, and microRNA expression, are described. The function of dose, duration, composition, and window of exposure in remodeling the individual's epigenetic terrain and disease susceptibility are addressed. The ideas of lifelong editing of early-life epigenetic memories, transgenerational effects through germline transmission, and the potential role of hydroxylmethylation of cytosine in developmental reprogramming are discussed. Finally, the epigenetic effects of several major classes of environmental factors are reviewed in the context of pathogenesis of disease. These include endocrine disruptors, tobacco smoke, polycyclic aromatic hydrocarbons, infectious pathogens, particulate matter, diesel exhaust particles, dust mites, fungi, heavy metals, and other indoor and outdoor pollutants. We conclude that the summation of epigenetic modifications induced by multiple environmental exposures, accumulated over time, represented as broad or narrow, acute or chronic, developmental or lifelong, may provide a more precise assessment of risk and consequences. Future investigations may focus on their use as readouts or biomarkers of the totality of past exposure for the prediction of future disease risk and the prescription of effective countermeasures.
The Ron receptor is upregulated in human breast cancers and correlates with enhanced metastasis and reduced patient survival. Ron overexpression drives mammary tumorigenesis through direct β-catenin activation and augmented tumor cell proliferation, migration and invasion. Ron and β-catenin are also coordinately elevated in breast cancers. The vitamin D receptor (VDR) antagonizes β-catenin signaling. Herein, we examined mammary tumor onset and progression using a Ron-driven murine model of breast tumorigenesis crossed with VDR deficient mice. VDR ablation accelerated mammary tumor onset and led to tumors that exhibited a desmoplastic phenotype and enhanced metastases. Tumor levels of active β-catenin were markedly increased in the absence of VDR. In vitro, VDR activation in breast cancer cells reduced β-catenin activation and transcriptional activity leading to elevated expression of the extracellular Wnt inhibitor dickkopf-related protein 1, and a reduction in the interaction of β-catenin with the cyclin D1 promoter. Expression of a stabilized form or β-catenin ablated the protective effects of VDR activation. Collectively, these studies delineate a protective role for VDR signaling in Ron-induced mammary tumorigenesis through disruption of β-catenin activation.
We previously reported that NR2E3, an orphan nuclear receptor, plays an important role in maintaining the basal expression of estrogen receptor α (ER) and that the NR2E3 level is highly correlated with the relapse-free survival of breast cancer patients. Here, we investigated the role of NR2E3 in benzo(a)pyrene (BaP)-mediated cell injury. BaP treatment reduced NR2E3 homo-dimer formation and expression and subsequently decreased ER expression. The chromatin immunoprecipitation assay results showed that the treatment of MCF-7 breast cancer cells and the mouse liver with BaP released NR2E3 from the ER promoter to transform the transcriptionally active histone modification status into a repressive state. NR2E3 depletion in MCF-7 cells also induced a similar inactive epigenetic status in the ER promoter region, indicating that NR2E3 is an essential epigenetic player that maintains basal ER expression. Interestingly, these negative effects of BaP on the expression levels of NR2E3 and ER were rescued by antioxidant treatment. Collectively, our study provides novel evidence to show that BaP-induced oxidative stress decreases ER expression, in part by regulating NR2E3 function, which modulates the epigenetic status of the ER promoter. NR2E3 is likely an essential epigenetic player that maintains basal ER expression to protect cells from BaP-induced oxidative injury.
Vitamin D₃ receptor (VDR) signaling within the mammary gland regulates various postnatal stages of glandular development, including puberty, pregnancy, involution, and tumorigenesis. Previous studies have shown that vitamin D₃ treatment induces cell-autonomous growth inhibition and differentiation of mammary epithelial cells in culture. Furthermore, mammary adipose tissue serves as a depot for vitamin D₃ storage, and both epithelial cells and adipocytes are capable of bioactivating vitamin D₃. Despite the pervasiveness of VDR in mammary tissue, individual contributions of epithelial cells and adipocytes, as well as the VDR-regulated cross-talk between these two cell types during pubertal mammary development, have yet to be investigated. To assess the cell-type specific effect of VDR signaling during pubertal mammary development, novel mouse models with mammary epithelial- or adipocyte-specific loss of VDR were generated. Interestingly, loss of VDR in either cellular compartment accelerated ductal morphogenesis with increased epithelial cell proliferation and decreased apoptosis within terminal end buds. Conversely, VDR signaling specifically in the mammary epithelium modulated hormone-induced alveolar growth, as ablation of VDR in this cell type resulted in precocious alveolar development. In examining cellular cross-talk ex vivo, we show that ligand-dependent VDR signaling in adipocytes significantly inhibits mammary epithelial cell growth in part through the vitamin D₃-dependent production of the cytokine IL-6. Collectively, these studies delineate independent roles for vitamin D₃-dependent VDR signaling in mammary adipocytes and epithelial cells in controlling pubertal mammary gland development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.