This work introduces an approach for optimization machinability measures of power consumption, machining time, and the surface roughness (PMS). This approach is starting with market customer’s demands, passing by optimizing the machinability measures (PMS), and ending by the optimized cutting conditions. The fuzzy logic was used to define the weights of each of required machinability measurement using method through expert rules depending on factory requirements. Genetic algorithm was formulated for giving optimum output values based on the customer’s demands. A neural network was designed for controlling the input cutting conditions with the PMS output parameters. The proposed soft computing technique creates reasonable results compared to experimental results and gives rich investigations for optimizing the output parameters not only for increasing productivity and quality demands but also for saving power consumed. The variation of consumed power, machining time, and surface roughness was calculated based on different customer demand levels. When the machining time and power consumed importance increased, the proposed technique reduced them by about 20% and 10% for the testes case.
The effects of negative rake angles on the ductile mode cutting of soda glass and sapphire were studied. In addition, the machining mechanism was studied using a groove-cutting model based on the orthogonal cutting theory. It was found that the specific cutting forces in ductile mode cutting increase on both the soda glass specimen and on the sapphire specimen when the rake angle of the tool becomes negative. The difference between the experimental data and theoretical data of the specific cutting forces becomes large when the tool has a high rake angle on the negative side. This is attributed to effects of the roundness of the edge, the effects of the roundness of the nose, and the plowing mechanism, which causes plastic flow of the work material to both sides of the groove. The specific cutting force of sapphire depends on the cutting direction against the crystal orientation. The specific cutting force of sapphire depends on the cutting direction in terms of the crystal orientation. The anisotropy of the cutting force of sapphire also depends on the rake angle of the tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.