Surface tension is a phenomenon in the liquid media and plays an important part in the development and survival of aquatic animals. Influence of Aquatain™ monomolecular film on surface tension was determined against mosquito larvae and pupae at different temperatures (10, 15, 20, 25, 30 and 35 °C) and Aquatain™ doses (0.5, 1.0 and 2.0 ml/m 2 ). In the laboratory, Aquatain™ showed larvicidal and pupicidal effects against the filarial vector Culex pipiens . Higher mortality was observed in late and more weighted instars/stages than young ones as well as in the pupal stage. The pupal mortality reached 76.2%, 86% and 93.3% after 12 h post-treatment at 0.5, 1.0 and 2.0 ml/m 2 , respectively, and it was completely eliminated (100%) within 24 h compared to 15.1%, 26.9% and 38.2% for 1 st larval instar, respectively. Also, results showed at 0.5 ml/m 2 with temperature range: 10, 15, 20, 25, 30 and 35 °C, the mortality reached 4.0, 6.7, 10.8, 17.3, 22.7, 29.3% and 32, 44, 54, 72, 84, 97.3% for 1 st and 4 th larval instar, respectively, where the surface tension (γ) was 65.6, 62.4, 58.0, 57.0, 54.2 and, 49.6 dyn/cm, while the Aquatain™ was more effective on mosquito larvae and pupae at high doses with the temperature range. On the other hand, without Aquatain™ dose, the mortality value ranged between 0.0 - 1.2%, and the surface tension (γ) was 74.5 dyne/cm, which is considered as an accidental death. Aquatain™ was effective against all aquatic phases of mosquitoes, especially against the last and weighted ones. Not only was the efficacy of Aquatain™ increased by increasing the dose, but it also increased with the increased temperature of the environment. This efficiency of Aquatain™ is due to its ability to reduce the surface tension of the water medium, preventing different stages of mosquitoes from reaching the surface for breathing thereby leading to suffocation and death. Therefore, we recommended Aquatain™ in programmes for mosquito control and other aquatic insects as a safe, cost-effective control agent.
Hydroxyapatite Ca 10 [PO 4 ] 6 [OH] is a biocompatible widely used in medicine and dentistry. Its applications depend greatly upon lattice substitution of Calcium sites in its structure by varies cations such as Na, Mg, Sr, Ag etc. Chromium plays an important role in reducing blood sugar level and improving insulin ability to convert glucose in cells to gain energy. In this paper we studied the effect of doping hydroxyapatite with chromium ions on its crystal dielectric properties. Pure hydroxyapatite and chromium loaded hydroxyapatite of chromium concentrations of 0.5, 1.0, 2.0, and 3.0 wt % forming samples S1, S2, S3 and S4 respectively were prepared by wet precipitation method. The dielectric parameters, permittivity ἐ, dielectric loss ἕ, conductivity σ, relaxation time t s and dielectric modulus M' and M'' were calculated at frequency of 20 Hz to 10 MHz. Results showed increase of ἐ, and ἕ, values of chromium loaded samples compared to pure hydroxyapatite. The conductivity of the doped samples was increased with chromium concentration increase. The relaxation times (t s ) chromium loaded samples showed increase of t s as chromium concentration increase. The dielectric properties showed that as chromium concentration increase, ἐ, ἕ, and σ of substance increase compared to the pure HA.
The control of the camel tick, Hyalomma dromedarii is very crucial. This study evaluated the novel toxicity of photosensitizers and Phoxim insecticide against H. dromedarii males using the adult immersion tests. Ticks were subjected to sunlight for 10 min post-treatment (PT). The optical characters of the applied materials were determined by UV–Vis spectroscopy (250–900 nm wavelengths). The intensity of spectra decreased as dye concentration decreased. The optical bandgap energies of the dyes at different concentrations were not changed as the concentration changed and decreased as the absorption peak of individual dyes red-shifted. The mortalities 72 h PT reached 42.2%, 44.4%, 51.1%, 71.1%, 46.7%, 48.9%, 44.4%, and 55.6% for chlorophyllin, echinochrome, field stain, methylene blue, phthalocyanine, rhodamine 6G, riboflavin, and safranin, respectively. Methylene blue recorded the highest median lethal concentration (LC50 = 127 ppm) followed by safranin, field stain, rhodamine 6G, phthalocyanine, echinochrome riboflavin, and chlorophyllin (LC50 = 209, 251, 271, 303, 324, 332, and 362 ppm, respectively, 72 h PT). Their median lethal time, LT50, values PT with 240 ppm were 45, 87, 96, 72, 129, 115, 131, and 137 h, respectively. The relative toxicities of the LC50 values 72 h PT showed that chlorophyllin, echinochrome, field stain, methylene blue, phthalocyanine, rhodamine 6G, riboflavin, and safranin were 3.2, 3.6, 4.6, 9.1, 3.8, 4.3, 3.5, and 5.6 times, respectively, more effective than Phoxim. Methylene blue, safranin, and field stain showed a broad absorbance area indicating a large photoactivity and better phototoxicity and could be used as alternative agents to synthetic acaricides. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.