Silver nanoparticles are increasingly used in various products, due to their antibacterial properties. Despite its wide spread use, only little information on possible adverse health effects exists. Therefore, the aim of this study was to assess the toxic potential of silver nanoparticles (<100 nm) in human lung epithelial (A549) cells and the underlying mechanism of its cellular toxicity. Silver nanoparticles induced dose and time-dependent cytotoxicity in A549 cells demonstrated by MTT and LDH assays. Silver nanoparticles were also found to induce oxidative stress in dose and time-dependent manner indicated by depletion of GSH and induction of ROS, LPO, SOD, and catalase. Further, the activities of caspases and the level of proinflammatory cytokines, namely interleukin-1β (IL-1β) and interleukin-6 (IL-6) were significantly higher in treated cells. DNA damage, as measured by single cell gel electrophoresis, was also dose and time-dependent signicants in A549 cells. This study investigating the effects of silver nanoparticles in human lung epithelial cells has provided valuable insights into the mechanism of potential toxicity induced by silver nanoparticles and warrants more careful assessment of silver nanoparticles before their industrial applications.
BackgroundSchmidtea mediterranea (Platyhelminthes, Tricladida, Continenticola) is found in scattered localities on a few islands and in coastal areas of the western Mediterranean. Although S. mediterranea is the object of many regeneration studies, little is known about its evolutionary history. Its present distribution has been proposed to stem from the fragmentation and migration of the Corsica-Sardinia microplate during the formation of the western Mediterranean basin, which implies an ancient origin for the species. To test this hypothesis, we obtained a large number of samples from across its distribution area. Using known and new molecular markers and, for the first time in planarians, a molecular clock, we analysed the genetic variability and demographic parameters within the species and between its sexual and asexual populations to estimate when they diverged.ResultsA total of 2 kb from three markers (COI, CYB and a nuclear intron N13) was amplified from ~200 specimens. Molecular data clustered the studied populations into three groups that correspond to the west, central and southeastern geographical locations of the current distribution of S. mediterranea. Mitochondrial genes show low haplotype and nucleotide diversity within populations but demonstrate higher values when all individuals are considered. The nuclear marker shows higher values of genetic diversity than the mitochondrial genes at the population level, but asexual populations present lower variability than the sexual ones. Neutrality tests are significant for some populations. Phylogenetic and dating analyses show the three groups to be monophyletic, with the west group being the basal group. The time when the diversification of the species occurred is between ~20 and ~4 mya, although the asexual nature of the western populations could have affected the dating analyses.ConclusionsS. mediterranea is an old species that is sparsely distributed in a harsh habitat, which is probably the consequence of the migration of the Corsica-Sardinia block. This species probably adapted to temperate climates in the middle of a changing Mediterranean climate that eventually became dry and hot. These data also suggest that in the mainland localities of Europe and Africa, sexual individuals of S. mediterranea are being replaced by asexual individuals that are either conspecific or are from other species that are better adapted to the Mediterranean climate.
Polycystic ovary syndrome (PCOS), a relevant cause of infertility, is a heterogeneous, endocrine disorder affecting up to 10-15% of women in reproductive age. Besides hyperandrogenism, insulin resistance (IR) plays a key role in such syndrome. Insulin-sensitizing drugs, such as Metformin, are effective in treating hyper-insulinemic PCOS patients. Recently, inositols - myo-inositol (MI) and D-chiro-inositol (DCI) - have shown to be an efficient and safe alternative in PCOS management, as both inositol isoforms are able to counteract downstream consequences of insulin resistance. Yet, whereas DCI contributes in mediating insulin activity mainly on non-ovarian tissues, MI displays specific effects on ovary, chiefly by modulating glucose metabolism and FSH-signaling. Moreover, MI may also improve ovarian functions by modulating steroid metabolism through non-insulin-dependent pathways. As DCI and MI activity likely involves different biological mechanisms, both inositol isoforms can be synergistically integrated according to a multitargeted design, by combining MI and DCI in a ratio corresponding to their physiological plasma relative amount (40:1). New experimental and clinical evidence with MI plus DCI evidenced the suitability of such integrated approach, and provided promising results. Further studies need to investigate thoroughly the molecular mechanism and confirm such preliminary data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.