This paper introduces a new signal-filtering, which combines the empirical mode decomposition (EMD) and a similarity measure. A noisy signal is adaptively broken down into oscillatory components called intrinsic mode functions by EMD followed by an estimation of the probability density function (pdf) of each extracted mode. The key idea of this paper is to make use of partial reconstruction, the relevant modes being selected on the basis of a striking similarity between the pdf of the input signal and that of each mode. Different similarity measures are investigated and compared. The obtained results, on simulated and real signals, show the effectiveness of the pdf-based filtering strategy for removing both white Gaussian and colored noises and demonstrate its superior performance over partial reconstruction approaches reported in the literature.
In this paper a new adaptive audio watermarking algorithm based on Empirical Mode Decomposition (EMD) is introduced. The audio signal is divided into frames and each one is decomposed adaptively, by EMD, into intrinsic oscillatory components called Intrinsic Mode Functions (IMFs). The watermark and the synchronization codes are embedded into the extrema of the last IMF, a low frequency mode stable under different attacks and preserving audio perceptual quality of the host signal. The data embedding rate of the proposed algorithm is 46.9-50.3 b/s. Relying on exhaustive simulations, we show the robustness of the hidden watermark for additive noise, MP3 compression, re-quantization, filtering, cropping and resampling. The comparison analysis shows that our method has better performance than watermarking schemes reported recently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.