Aims Aortic valve stenosis is commonly considered a degenerative disorder with no recommended preventive intervention, with only valve replacement surgery or catheter intervention as treatment options. We sought to assess the causal association between exposure to lipid levels and risk of aortic stenosis. Methods and results Causality of association was assessed using two-sample Mendelian randomization framework through different statistical methods. We retrieved summary estimations of 157 genetic variants that have been shown to be associated with plasma lipid levels in the Global Lipids Genetics Consortium that included 188 577 participants, mostly European ancestry, and genetic association with aortic stenosis as the main outcome from a total of 432 173 participants in the UK Biobank. Secondary negative control outcomes included aortic regurgitation and mitral regurgitation. The odds ratio for developing aortic stenosis per unit increase in lipid parameter was 1.52 [95% confidence interval (CI) 1.22–1.90; per 0.98 mmol/L] for low density lipoprotein (LDL)-cholesterol, 1.03 (95% CI 0.80–1.31; per 0.41 mmol/L) for high density lipoprotein (HDL)-cholesterol, and 1.38 (95% CI 0.92–2.07; per 1 mmol/L) for triglycerides. There was no evidence of a causal association between any of the lipid parameters and aortic or mitral regurgitation. Conclusion Lifelong exposure to high LDL-cholesterol increases the risk of symptomatic aortic stenosis, suggesting that LDL-lowering treatment may be effective in its prevention.
The classification of handwriting into different categories, such as age, gender, and nationality, has several applications. In forensics, handwriting classification helps investigators focus on a certain category of writers. However, only a few studies have been carried out in this field. Classification of handwriting into a demographic category is generally performed in two steps: feature extraction and classification. The performance of a system depends mainly on the feature extraction step because characterizing features makes it possible to distinguish between writers. In this study, we propose several geometric features to characterize handwritings and use these features to perform the classification of handwritings with regards to age, gender, and nationality. Features are combined using random forests and kernel discriminant analysis. Classification rates are reported on the QUWI dataset, reaching 74.05% for gender prediction, 55.76% for age range prediction, and 53.66% for nationality prediction when all writers produce the same handwritten text and 73.59% for gender prediction, 60.62% for age range prediction, and 47.98% for nationality prediction when each writer produces different handwritten text.
Observational causal inference is useful for decisionmaking in medicine when randomized clinical trials (RCTs) are infeasible or nongeneralizable. However, traditional approaches do not always deliver unconfounded causal conclusions in practice. The rise of "doubly robust" nonparametric tools coupled with the growth of deep learning for capturing rich representations of multimodal data offers a unique opportunity to develop and test such models for causal inference on comprehensive electronic health records (EHRs). In this article, we investigate causal modeling of an RCT-established causal association: the effect of classes of antihypertensive on incident cancer risk. We develop a transformer-based model, targeted bidirectional EHR transformer (T-BEHRT) coupled with doubly robust estimation to estimate average risk ratio (RR). We compare our model to benchmark statistical and deep learning models for causal inference in multiple experiments on semi-synthetic derivations of our dataset with various types and intensities of confounding. In order to further test the reliability of our approach, we test our model on situations of limited data. We find that our model provides more accurate estimates of relative risk [least sum absolute error (SAE) from ground truth] compared with benchmark estimations. Finally, our model provides an estimate of class-wise antihypertensive effect on cancer risk that is consistent with results derived from RCTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.