International audienceA comprehensive study of commercially available and newly synthesized proton conducting perfluorinated sulfonic acid (PFSA) surfactantsand polymeric systems is reported, specially designed in a bottom-up search to improve the basic understanding of PFSA polymers used as benchmark electrolytes in fuel cells. Hydration-dependent mesomorphous phases are formed by the self-assembly of these molecules in water. The impact of the hydrophobic chain length, the density of charge, the molecular architecture on the nanostructure, and the dynamics of confined water were studied by combining small-angle X-ray scattering, quasielastic neutron scattering, and pulsed-field gradient NMR. We introduce a hydration-dependent structural parameter, dw (mean size of water domains), that allows to establish the structure−transport relationship in PFSA materials. This multiscale study reveals that (i) the dynamical behavior of confined protons and water molecules are rather insensitive to the topology of the host matrix and (ii) the main parameter driving the performance of fuel cell electrolytes is the total water content required for swelling the domains above a value of 1 nm
Eugenol, a natural phenol currently mainly obtained from clove oil, is an interesting aromatic building block for the synthesis of novel biobased monomers. It can also be obtained from lignin depolymerization, becoming a promising building block due to lignin availability as biomass feedstock. The synthesis of eight monomers derived from eugenol containing polymerizable functional groups is achieved. The (meth)acrylation of eugenol, isoeugenol, and dihydroeugenol is performed and the solution homopolymerization of these biobased monomers is studied. Moreover, aiming to prepare functional polymers, the introduction of epoxy and cyclic carbonate groups is executed via modification of the allylic double bond present in eugenol derived methacrylate. Thus, a novel platform of versatile biobased monomers derived from eugenol is presented, opening the opportunity to use them in a wide range of polymerization processes and applications
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.