It has been established that insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice results from a CD4+ and CD8+ T cell–dependent autoimmune process directed against the pancreatic beta cells. The precise roles that beta cell–reactive CD8+ and CD4+ T cells play in the disease process, however, remain ill defined. Here we have investigated whether naive beta cell–specific CD8+ and CD4+ T cells can spontaneously accumulate in pancreatic islets, differentiate into effector cells, and destroy beta cells in the absence of other T cell specificities. This was done by introducing Kd– or I-Ag7–restricted beta cell–specific T cell receptor (TCR) transgenes that are highly diabetogenic in NOD mice (8.3- and 4.1-TCR, respectively), into recombination-activating gene (RAG)-2–deficient NOD mice, which cannot rearrange endogenous TCR genes and thus bear monoclonal TCR repertoires. We show that while RAG-2−/− 4.1-NOD mice, which only bear beta cell–specific CD4+ T cells, develop diabetes as early and as frequently as RAG-2+ 4.1-NOD mice, RAG-2−/− 8.3-NOD mice, which only bear beta cell–specific CD8+ T cells, develop diabetes less frequently and significantly later than RAG-2+ 8.3-NOD mice. The monoclonal CD8+ T cells of RAG-2−/− 8.3-NOD mice mature properly, proliferate vigorously in response to antigenic stimulation in vitro, and can differentiate into beta cell–cytotoxic T cells in vivo, but do not efficiently accumulate in islets in the absence of a CD4+ T cell–derived signal, which can be provided by splenic CD4+ T cells from nontransgenic NOD mice. These results demonstrate that naive beta cell– specific CD8+ and CD4+ T cells can trigger diabetes in the absence of other T or B cell specificities, but suggest that efficient recruitment of naive diabetogenic beta cell–reactive CD8+ T cells to islets requires the assistance of beta cell–reactive CD4+ T cells.
For unknown reasons, autoimmune diseases such as type 1 diabetes develop after prolonged periods of inflammation of mononuclear cells in target tissues. Here we show that progression of pancreatic islet inflammation to overt diabetes in nonobese diabetic (NOD) mice is driven by the 'avidity maturation' of a prevailing, pancreatic beta-cell-specific T-lymphocyte population carrying the CD8 antigen. This T-lymphocyte population recognizes two related peptides (NRP and NRP-A7) in the context of H-2Kd class I molecules of the major histocompatibility complex (MHC). As pre-diabetic NOD mice age, their islet-associated CD8+ T lymphocytes contain increasing numbers of NRP-A7-reactive cells, and these cells bind NRP-A7/H-2Kd tetramers with increased specificity, increased avidity and longer half-lives. Repeated treatment of pre-diabetic NOD mice with soluble NRP-A7 peptide blunts the avidity maturation of the NRP-A7-reactive CD8+ T-cell population by selectively deleting those clonotypes expressing T-cell receptors with the highest affinity and lowest dissociation rates for peptide-MHC binding. This inhibits the local production of T cells that are cytotoxic to beta cells, and halts the progression from severe insulitis to diabetes. We conclude that avidity maturation of pathogenic T-cell populations may be the key event in the progression of benign inflammation to overt disease in autoimmunity.
We report that disruption of CD154 in nonobese diabetic (NOD) mice abrogates the helper function of CD4+CD25- T cells without impairing the regulatory activity of CD4+CD25+ T cells. Whereas CD4+ T cells from NOD mice enhanced a diabetogenic CD8+ T cell response in monoclonal TCR-transgenic NOD mice, CD4+ T cells from NOD.CD154(-/-) mice actively suppressed it. Suppression was mediated by regulatory CD4+CD25+ T cells capable of inhibiting CD8+ T cell responses induced by peptide-pulsed dendritic cells (DCs), but not peptide/MHC monomers. It involved inhibition of DC maturation, did not occur in the presence of CD154+ T-helper cells, and could be inhibited by activation of DCs with LPS, CpG DNA, or an agonistic anti-CD40 mAb. Thus, in at least some genetic backgrounds, CD154-CD40 interactions and innate stimuli release immature DCs from suppression by CD4+CD25+ T cells.
Weaker is better ntigenic therapy researchers have long relied on repeated dosing of high-affinity ligands to inactivate select T cells by causing over-stimulation that leads to apoptosis. Contrary to this strategy, Bingye Han, Pau Serra, Pere Santamaria (University of Calgary, Alberta, Canada), and colleagues now show that low-affinity peptides targeting autoreactive T cells protect mice more effectively against diabetes than do high-affinity peptides. Peptides that are similar in sequence to a portion of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) that strongly bound to autoreactive T cells nearly completely obliterated this T cell pool in mice. But lurking in the background were smaller pools of autoreactive T cells that were impervious to the high-affinity peptide, yet reactive against other portions of IGRP. Once their competition had been eliminated, these cells emerged to fill in the vacant niche. The high-affinity peptide thus failed to protect against diabetes. Low-affinity peptides, by contrast, selectively eliminated the most menacing of IGRP-reactive T cells, while maintaining a substantial population of more benign T cells that recognized, but were not harmed by, the peptides. By becoming established as the dominant population, the nonpathogenic T cells effectively blocked more reactive but less prevalent T cells from taking over. Now with a better grasp on the fine balance between ligand binding and dosage, Santamaria says, "targeting multiple epitopes simultaneously is likely to be more practical than finding the optimal dose for deletion of high-avidity subtypes while preserving low-avidity subtypes."
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.