Type 1 diabetes is an autoimmune disease in which autoreactive T cells attack and destroy the insulin-producing pancreatic  cells. CD8 ؉ T cells are essential for this  cell destruction, yet their specific antigenic targets are largely unknown. Here, we reveal that the autoantigen targeted by a prevalent population of pathogenic CD8 ؉ T cells in nonobese diabetic mice is islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP). Through tetramer technology, IGRP-reactive T cells are readily detected in islets and peripheral blood directly ex vivo. The human IGRP gene maps to a diabetes susceptibility locus, suggesting that IGRP also may be an antigen for pathogenic T cells in human type 1 diabetes and, thus, a new, potential target for diagnostic and therapeutic approaches.T he nonobese diabetic (NOD) mouse is a widely studied model of human type 1 diabetes, an autoimmune disease characterized by inflammation of pancreatic islets (insulitis) followed by T cell-mediated destruction of insulin (INS)-producing  cells (1). Both CD4 ϩ and CD8 ϩ T cells are required for this pathogenic process (1); however, CD8 ϩ T cells appear to be responsible for the initial  cell insult (1-3). Whereas the pathogenicity of B cells and autoantibodies is less clear, the autoantigens currently believed to contribute to autoimmune diabetes pathogenesis in NOD mice and humans all were originally identified based on the presence of specific autoantibodies rather than by T cell recognition (4-6). Little is known of the  cell antigens targeted by the pathogenic CD8 ϩ T cells. Although one study identified an INS peptide as the antigenic target of the majority of islet-infiltrating CD8 ϩ T cells in NOD mice (7), the prevalence of these INS-reactive CD8 ϩ T cells was not confirmed in subsequent studies (8,9).A substantial proportion of  cell-autoreactive CD8 ϩ T cells isolated from NOD islets express a shared T cell receptor ␣ (TCR␣) chain (V␣17-J␣42), suggesting recognition of a common  cell peptide (3, 10). These T cells do not recognize the antigenic INS peptide mentioned above (11,12). The pathogenicity of this prevalent T cell population has been well established through studies of the 8.3 T cell clone (a representative T cell clone of the V␣17-J␣42-expressing T cell population) (13, 14). 8.3-Like T cells are present in the earliest islet infiltrates of NOD mice (3) and undergo avidity maturation as islet inflammation progresses to overt disease (8). At any given time, 8.3-like T cells can constitute up to 30-40% of the islet-associated CD8 ϩ T cells (9). Strikingly, quantification of 8.3-like T cells in peripheral blood predicts diabetes development in individual NOD mice (9), unlike any other single immune indicator identified to date. Although the prevalence and pathogenicity of 8.3-like T cells has been clearly established, the identity of their ligand has remained elusive. Materials and MethodsMice. NOD͞Lt mice were maintained by brother-sister mating. 8.3-TCR␣-transgenic NOD mice, designated 8.3-NOD, ha...
We report that disruption of CD154 in nonobese diabetic (NOD) mice abrogates the helper function of CD4+CD25- T cells without impairing the regulatory activity of CD4+CD25+ T cells. Whereas CD4+ T cells from NOD mice enhanced a diabetogenic CD8+ T cell response in monoclonal TCR-transgenic NOD mice, CD4+ T cells from NOD.CD154(-/-) mice actively suppressed it. Suppression was mediated by regulatory CD4+CD25+ T cells capable of inhibiting CD8+ T cell responses induced by peptide-pulsed dendritic cells (DCs), but not peptide/MHC monomers. It involved inhibition of DC maturation, did not occur in the presence of CD154+ T-helper cells, and could be inhibited by activation of DCs with LPS, CpG DNA, or an agonistic anti-CD40 mAb. Thus, in at least some genetic backgrounds, CD154-CD40 interactions and innate stimuli release immature DCs from suppression by CD4+CD25+ T cells.
Weaker is better ntigenic therapy researchers have long relied on repeated dosing of high-affinity ligands to inactivate select T cells by causing over-stimulation that leads to apoptosis. Contrary to this strategy, Bingye Han, Pau Serra, Pere Santamaria (University of Calgary, Alberta, Canada), and colleagues now show that low-affinity peptides targeting autoreactive T cells protect mice more effectively against diabetes than do high-affinity peptides. Peptides that are similar in sequence to a portion of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) that strongly bound to autoreactive T cells nearly completely obliterated this T cell pool in mice. But lurking in the background were smaller pools of autoreactive T cells that were impervious to the high-affinity peptide, yet reactive against other portions of IGRP. Once their competition had been eliminated, these cells emerged to fill in the vacant niche. The high-affinity peptide thus failed to protect against diabetes. Low-affinity peptides, by contrast, selectively eliminated the most menacing of IGRP-reactive T cells, while maintaining a substantial population of more benign T cells that recognized, but were not harmed by, the peptides. By becoming established as the dominant population, the nonpathogenic T cells effectively blocked more reactive but less prevalent T cells from taking over. Now with a better grasp on the fine balance between ligand binding and dosage, Santamaria says, "targeting multiple epitopes simultaneously is likely to be more practical than finding the optimal dose for deletion of high-avidity subtypes while preserving low-avidity subtypes."
Spontaneous autoimmune diabetes development in NOD mice requires both CD8+ and CD4+ T cells. Three pathogenic CD8+ T cell populations (represented by the G9C8, 8.3, and AI4 clones) have been described. Although the Ags for G9C8 and 8.3 are known to be insulin and islet-specific glucose-6-phosphatase catalytic subunit-related protein, respectively, only mimotope peptides had previously been identified for AI4. In this study, we used peptide/MHC tetramers to detect and quantify these three pathogenic populations among β cell-reactive T cells cultured from islets of individual NOD mice. Even within age-matched groups, each individual mouse exhibited a unique distribution of β cell-reactive CD8+ T cells, both in terms of the number of tetramer-staining populations and the relative proportion of each population in the islet infiltrate. Thus, the inflammatory process in each individual follows its own distinctive course. Screening of a combinatorial peptide library in positional scanning format led to the identification of a peptide derived from dystrophia myotonica kinase (DMK) that is recognized by AI4-like T cells. Importantly, the antigenic peptide is naturally processed and presented by DMK-transfected cells. DMK is a widely expressed protein that is nonetheless the target of a β cell-specific autoimmune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.