The millimetre wave (mmWave) is alleged as an important element invention to respond to the rapid increase in wireless demand for mobile traffic using its huge bandwidth. However, channel modeling remains difficult due to its high dependence on weather conditions and the positioning of the antenna for communication in direct visibility line-of-sight (LOS). Co-polarization and cross-polarization (X-pol) are two main events in the direction of the radiation element for wave transmission; where the wanted direction of wave transmission denotes the co-pol and the orthogonal propagation of the intended direction represents X-pol. This work investigates the effect of the polarization on a statistical channel modeling at 28 GHz, 38 GHz & 73 GHz mmWave channel using NYUSIM Model.
Millimeter-wave (mmWave) frequencies are considered as candidate bands for 5G/6G mobile networks. Diffraction models are significant for predicting non-line-of-sight (NLOS) wireless channels while it is shown that the line of sight (LOS) path is usually blocked by buildings in urban area environments. A lot of investigations on the diffraction loss have been performed, and most of them just considered one obscuring object and a short propagation distance. In this paper, we conduct a statistical analysis of the diffraction loss in the outdoor NLOS in Urban Micro Cell, considering a transmitter (TX) and a receiver (RX) which are located at an aggregation point on the roof of a building. We have focused on analyzing the diffraction loss suffered by mmWave signals when they hit one or two obscuring points located over rooftop of the buildings. The objects have different heights located at various distances between TX and RX. We have considered the bands: 28 GHz, 38 GHz, 60 GHz, 73 GHz, and 100 GHz. The analysis is based on the diffraction model named Knife Edge Diffraction (KED). We have strictly followed the ITU Recommendations ITU-R P.526-15 (10/2019). In this work, we use two schemes that characterize the KED model, namely Single KED (SKED) and Double Isolated KED (DIKED). Different scenarios are performed by varying different parameters of the channel between TX and RX. The results show that the diffraction loss is inversely proportional to the distance between the obscuring object and the transmitter, the wavelength, and the distance between the TX and RX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.