This paper is interested in studying a system consisting of a wind turbine operating at variable wind speeds, and a two-feed asynchronous machine (DFIG) connected to the grid by a stator and fed by a transducer at the side of the rotor. The conductors are separately controlled for active and reactive power flow between the stator (DFIG) and the grid. The proposed controllers generate reference voltages for the rotor to ensure that the active and reactive power reaches the required reference values, to ensure effective tracking of the optimum operating point and to obtain the maximum electrical power output. Dynamic analysis of the system is performed under variable wind speeds. This analysis is based on active and reactive energy control. The new work in this paper is to introduce theories of genetic algorithms into the control strategy used in the switching chain of wind turbines in order to improve performance and efficiency. Simulation results applied to genetic algorithms give greater efficiency, impressive results, and stability to wind turbine systems are compared to classic PI regulators. Then, artificial intelligent controls, such as genetic algorithms control, are applied. Results obtained in the Matlab/Simulink environment show the efficiency of this proposed unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.