In this paper, we are interested in the mathematical and numerical study of a variational model derived as Reaction-Diffusion System for image denoising. We use a nonlinear regularization of total variation (TV) operator's, combined with a decomposition approach of H −1 norm suggested by Guo and al. ([19],[20]). Based on Galerkin's method, we prove the existence and uniqueness of the solution on Orlicz space for the proposed model. At last, compared experimental results distinctly demonstrate the superiority of our model, in term of removing noise while preserving the edges and reducing staircase effect.
Recently, various mathematical models have been proposed to model COVID-19 outbreak. These models are an effective tool to study the mechanisms of coronavirus spreading and to predict the future course of COVID-19 disease. They are also used to evaluate strategies to control this pandemic. Generally, SIR compartmental models are appropriate for understanding and predicting the dynamics of infectious diseases like COVID-19. The classical SIR model is initially introduced by Kermack and McKendrick (cf. (Anderson, R. M. 1991. “Discussion: the Kermack–McKendrick Epidemic Threshold Theorem.” Bulletin of Mathematical Biology 53 (1): 3–32; Kermack, W. O., and A. G. McKendrick. 1927. “A Contribution to the Mathematical Theory of Epidemics.” Proceedings of the Royal Society 115 (772): 700–21)) to describe the evolution of the susceptible, infected and recovered compartment. Focused on the impact of public policies designed to contain this pandemic, we develop a new nonlinear SIR epidemic problem modeling the spreading of coronavirus under the effect of a social distancing induced by the government measures to stop coronavirus spreading. To find the parameters adopted for each country (for e.g. Germany, Spain, Italy, France, Algeria and Morocco) we fit the proposed model with respect to the actual real data. We also evaluate the government measures in each country with respect to the evolution of the pandemic. Our numerical simulations can be used to provide an effective tool for predicting the spread of the disease.
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.