A modified compact planar ultrawideband (UWB) monopole antenna with triple controllable band-notched characteristics is presented in this paper. The proposed antenna consists of a modified stair cased V-shaped radiating element and partial ground plane. The triple band-notched characteristics are achieved by embedding two different vertical up C-shaped slots with a vertical down C-shaped slot in the radiating patch and in the ground plane, respectively. Besides, the bandwidth of each rejected band can be independently controlled by adjusting the dimensions of the corresponding band notched structure. The proposed antenna with rejected bands characteristics is successfully simulated, prototyped, and measured. The measured results show that the antenna operates until upper 11 GHz for voltage standing wave ratio (VSWR) is less than 2, and exhibits bands rejection of 1.6–2.66 GHz (49.76%), 3-4 GHz (28.57%), and 5.13–6.03 GHz (16.12%). Moreover, the proposed antenna shows a near omnidirectional radiation patterns, stable peak gain, and with small group delay and transfer function variation on the whole UWB frequency range except in the notched frequency bands, which makes it suitable for being used in the future UWB applications.
This paper introduces a novel compact planar Ultra-Wideband (UWB) Multiple-Input-Multiple-Output (MIMO) antenna with dual-band notched performance for Surfaces Penetrating (SP) application. To avoid interference from co-existing systems, two notched bands are introduced by including strips inside the radiating patches. The two ports MIMO antenna is printed on the low-cost FR4 substrate having a compact size of 56×32.47×1.5 mm3. The measured results indicate that the −10 dB bandwidth of the proposed MIMO antenna covers a wide bandwidth from 1.57 GHz to 12.4 GHz (155.05%) with dual-band rejection (2.04 GHz – 3.98 GHz and 4.8 GHz – 6.22 GHz). The effects of numerous construction and decoration surfaces on the antenna’s reflection coefficients are measured. Gypsum, White Portland Cement, Slate, Marble, Wood and Reinforced Concrete were tested. A good penetrating capability is measured which confirms the aptitude of the proposed MIMO antenna to work as SP antenna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.