In this research paper, we introduce a general structure of a fractional boundary value problem in which a 2-term fractional differential equation has a fractional bi-order setting of Riemann–Liouville type. Moreover, we consider the boundary conditions of the proposed problem as mixed Riemann–Liouville integro-derivative conditions with four different orders which cover many special cases studied before. In the first step, we investigate the existence and uniqueness of solutions for the given multi-order boundary value problem, and then the Hyers–Ulam stability is another notion in this regard which we study. Finally, we provide two illustrative examples to support our theoretical findings.
We study two hybrid and non-hybrid fractional boundary value problems via the Caputo-Hadamard type derivatives. We seek the existence criteria for these two problems separately. By utilizing the generalized Dhage's theorem, we derive desired results for an integral structure of solutions for the hybrid problems. Also by considering the special case as a non-hybrid boundary value problem (BVP), we establish other results based on the existing tools in the topological degree theory. In the end of the article, we examine our theoretical results by presenting some numerical examples to show the applicability of the analytical findings.
Our main purpose in this work is to derive an existence criterion for a Caputo conformable hybrid multi-term integro-differential equation equipped with initial conditions. In this way, we consider a partially ordered Banach space, and, by applying the lower solution property, the existence and successive approximations of solutions for the mentioned hybrid initial problem are investigated. Eventually, we formulate an illustrative example for this hybrid IVP to support our findings from a numerical point of view. Moreover, we plot the sequence of the obtained approximate solutions for different values of noninteger orders.
In this research article, we turn to studying the existence and different types of stability such as generalized Ulam–Hyers stability and generalized Ulam–Hyers–Rassias stability of solutions for a new modeling of a boundary value problem equipped with the fractional differential equation which contains the multi-order generalized Caputo type derivatives furnished with four-point mixed generalized Riemann–Liouville type integro-derivative conditions. At the end of the current paper, we formulate two illustrative examples to confirm the correctness of theoretical findings from computational aspects.
In this paper, we studied the existence results for solutions of a new class of the fractional boundary value problem in the Caputo–Hadamard settings. Moreover, boundary conditions of this fractional problem were formulated as the mixed multi-order Hadamard integro-derivative conditions. To prove the main existence results, we applied two well-known techniques in the topological degree and fixed point theories. Finally, we provide two examples to show the compatibility of our theoretical findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.