(2016) Effect of Co-60 gamma-ray irradiation on electrical properties of Ti/Au/GaAs1-xNx Schottky diodes. Current Applied Physics, 16 (8). pp. 850-858. ISSN 1878850-858. ISSN -1675 Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/39520/1/1-s2.0-S156717391630116X-main.pdf Copyright and reuse:The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. This article is made available under the Creative Commons Attribution Non-commercial No Derivatives licence and may be reused according to the conditions of the licence. For more details see: http://creativecommons.org/licenses/by-nc-nd/2.5/ A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Effect aek1976@outlook.com Abstract:Current-voltage (I-V), capacitance-voltage-frequency (C-V-f) and conductance-voltagefrequency (G/ω-V-f) measurements at room temperature are used to study 50 kGy 60 Co γ-ray electrical properties irradiation dependence of Ti/Au/GaAs 1-x N x Schottky diodes with 0.2%; 0.4%; 0.8% and 1.2% nitrogen dilution. This γ-ray irradiation induces a permanent damage that has increased ideality factor and series resistance for all samples. It was accompanied by a decrease in Schottky barrier height with nitrogen content up to 0.4%N and remained constant thereafter. Radiation was also found to degrade the reverse leakage current. At high frequency (1 MHz), capacitance and conductance decreased after radiation due to a decrease in net doping concentration. Interface state density and series resistance were determined from C-V-f and G/ω-V-f characteristics using Hill-Coleman methods. Interface states density exponentially decreased with increasing frequency confirming the behavior of interface traps response to ac signal. Series resistance increases after irradiation is attributed to carrier's removal effect and mobility degradation. It has two peaks in the accumulation and inversion region for some diodes (0.4%N, 0.8%N). γ-ray irradiation produced traps levels and recombination centers that reduce relaxation time. An increase in %N content can impede irradiation damage with even some compensation when the percent of diluted nitrogen is high (1.2%N).
In recent years, power quality has become a major concern for electric network managers. Active filtering control schemes ensure improved power quality of the electric network and are able to maintain a desired voltage level at the point of connection, regardless of the current absorbed by nonlinear loads. Harmonics can cause vibrations, equipment distortion, losses and sweatiness in transformers. The main objective of this work is to enhance the quality of energy in a microgrid consisting of 100 kW photovoltaic (PV) system and a 50 kW battery storage connected to nonlinear and unbalanced loads. This paper proposes a the four-arm parallel active filter with a on Proportional-Integral (PI) controller to mitigate the harmonic problems in a microgrid. In addition, an algorithm has been designed to eliminate the neutral current. The identification function is one of the most particular approach for extracting harmonics, it involves providing a current reference imposed by the active filter in order to carry out the filtering operation. Both the performance and the quality of the current harmonic compensation's depend strongly on the strategy adopted for the generating the current reference. In this work, the instantaneous power strategy p-q is chosen outstanding the simplicity and effectiveness in implementation. The proposed control strategy has been tested under simulations and the results have shown good tracking of the references and a significant reduction in the Total Harmonic Distorsion (THD) level under highly unbalanced conditions of the nonlinear loads. The current THD is reduced from 43.64 before filtering to 3.74% after the application of the four-arm filter, following the recommendations of IEEE-519 standard (THD less than 5%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.