This paper reports the effect of solvent evaporation temperature on spray-coated tin disulfide (SnS2) thin films from molecular ink. Thiourea and tin chloride were the key chemical reagents used for the synthesis of SnS2 transparent ink under atmospheric conditions. The structural and compositional properties of SnS2 thin films revealed formation of pristine hexagonal SnS2. The films are smooth, homogeneous resulting in band gaps ranging from 2 to 2.22 eV suited for a Cd-free alternative buffer layer for Cu-based multicomponent solar cells. Thermoelectric power measurement showed that tin disulfide films exhibit n-type conductivity. Activation energy estimated from temperature variation of electrical conductivity measurement varied from 40 to 90 mV. Our results suggest that ink-processed SnS2 can be used as a potential alternative for opto-electronic devices such as thin film solar cell and photodetector devices.
Thallium gallium disulfide (TlGaS2) belonging to layered structured semiconducting family has been a significant compound due to its outstanding characteristics. Its layered characteristics take attention for two-dimensional (2D) material research area and thus TlGaS2 is known as promising layered compound to develop 2D materials for optoelectronic devices. To the best of our knowledge, the present work is the first one investigating TlGaS2 thin films grown by thermal evaporation method. The current study focused into the structural, morphological, and optical characteristics of thermally evaporated TlGaS2 thin films. X-ray diffraction pattern of the films exhibited one peak around 36.10o which was associated with (-422) plane of the monoclinic crystalline structure. The atomic compositional ratio of Tl:Ga:S was found to be suitable for the chemical formula of TlGaS2. Scanning electron microscopy images showed uniformly and narrowly deposited nanoparticles with sizes varying between 100 and 200 nm. Room temperature transmission measurements were recorded to obtain the bandgap energy of the evaporated thin films. Tauc analyses indicated direct band gap energy of 2.60 eV. Finally, Urbach energy was obtained as 95 meV. The results of the present paper would provide valuable insight to 2D material technology to understand the potential device applications of the TlGaS2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.