This study describes an analytical proposal to predict lateral shear capacity of confined masonry walls that fail by diagonal splitting, where the maximum shear is evaluated as the dowel action of confined columns' reinforcement added to the shear capacity of the plain masonry panel. In order to validate the proposed approach, experimental test results and gathered data from literature were used. The experimental tests concerned two confined clay brick walls subjected to different level of gravity load and cyclic lateral loading. The applicability of some empirical formulae found in literature regarding the stiffness degradation was investigated. Good correlation between the predicted lateral resistance using the proposed approach and all data was achieved.
This study describes an analytical proposal to predict lateral shear capacity of confined masonry walls that fail by diagonal splitting, where the maximum shear is evaluated as the dowel action of confined columns' reinforcement added to the shear capacity of the plain masonry panel. In order to validate the proposed approach, experimental test results and gathered data from literature were used. The experimental tests concerned two confined clay brick walls subjected to different level of gravity load and cyclic lateral loading. The applicability of some empirical formulae found in literature regarding the stiffness degradation was investigated. Good correlation between the predicted lateral resistance using the proposed approach and all data was achieved.
The distribution of seismic loading to each storey of a building depends on a number of factors, mainly on the periods, mode shapes and modal participation. The estimation of these dynamic characteristics is essential in analyzing the seismic response of multi-storey buildings. Based on a rigorous dynamic analytical model of the building, this research provides a novel database of vibration modes of multi-storey buildings with reinforced concrete (RC) shear walls. The Stodola–Vianello iterative method was used to determine these. The first modes of vibration, cumulating a modal mass participation ratio (MMPR) greater than 90%, are summarized and presented in a table form. The results are equally valid for uniform buildings with masonry infill walls. The research has highlighted that the eigenvectors are independent of the values of the mass and the mechanical characteristics of the structure (the modulus of elasticity, the moment of inertia and height) but also on the variation of these characteristics over the height of the building. Consequently, for shear wall buildings with identical storeys, the eigenvectors, the MMPRs and the modal participation factors are accurately determined for this type of structure. The significance of the research consists of providing a table that engineers and researcher scan easily use to determine the dynamic characteristics of the building, thus avoiding repetition of the calculations relating to this type of buildings. The study has also highlighted the importance of selecting the appropriate dynamic behavior of the structure for seismic design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.