Optimisation problems arising in industry are some of the hardest, often because of the tight specifications of the products involved. They are almost invariably constrained and they involve highly nonlinear, and non-convex functions both in the objective and in the constraints. It is also often the case that the solutions required must be of high quality and obtained in realistic times. Although there are already a number of well performing optimisation algorithms for such problems, here we consider the novel Plant Propagation Algorithm (PPA) which on continuous problems seems to be very competitive. It is presented in a modified form to handle a selection of problems of interest. Comparative results obtained with PPA and state-of-the-art optimisation algorithms of the Nature-inspired type are presented and discussed. On this selection of problems, PPA is found to be as good as and in some cases superior to these algorithms.
The seasonal production of fruit and seeds is akin to opening a feeding station, such as a restaurant. Agents coming to feed on the fruit are like customers attending the restaurant; they arrive at a certain rate and get served at a certain rate following some appropriate processes. The same applies to birds and animals visiting and feeding on ripe fruit produced by plants such as the strawberry plant. This phenomenon underpins the seed dispersion of the plants. Modelling it as a queuing process results in a seed-based search/optimisation algorithm. This variant of the Plant Propagation Algorithm is described, analysed, tested on nontrivial problems, and compared with well established algorithms. The results are included.
Multiobjective optimization entails minimizing or maximizing multiple objective functions subject to a set of constraints. Many real world applications can be formulated as multi-objective optimization problems (MOPs), which often involve multiple conflicting objectives to be optimized simultaneously. Recently, a number of multi-objective evolutionary algorithms (MOEAs) were developed suggested for these MOPs as they do not require problem specific information. They find a set of non-dominated solutions in a single run. The evolutionary process on which they are based, typically relies on a single genetic operator. Here, we suggest an algorithm which uses a basket of search operators. This is because it is never easy to choose the most suitable operator for a given problem. The novel hybrid non-dominated sorting genetic algorithm (HNSGA) introduced here in this paper and tested on the ZDT (Zitzler-Deb-Thiele) and CEC'09 (2009 IEEE Conference on Evolutionary Computations) benchmark problems specifically formulated for MOEAs. Numerical results prove that the proposed algorithm is competitive with state-of-the-art MOEAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.