Since its appearance in 1947, the primal simplex algorithm has been one of the most popular algorithms for solving linear programs. It is often very efficient when there is very little degeneracy, but it often struggles in the presence of high degeneracy, executing many pivots without improving the objective function value. In this paper, we propose an improved primal simplex algorithm that deals with this issue. This algorithm is based on new theoretical results that shed light on how to reduce the negative impact of degeneracy. In particular, we show that, from a nonoptimal basic solution with p positive-valued variables, there exists a sequence of at most m - p + 1 simplex pivots that guarantee the improvement of the objective value, where m is the number of constraints in the linear program. These pivots can be identified by solving an auxiliary linear program. Finally, we briefly summarize computational results that show the effectiveness of the proposed algorithm on degenerate linear programs.
Abstract. The concept of the lower limit for vector-valued mappings is the main focus of this work. We first introduce a new definition of adequate lower and upper level sets for vector-valued mappings and establish some of their topological and geometrical properties. Characterization of semicontinuity for vector-valued mappings is thereafter presented. Then, we define the concept of vector lower limit, proving its lower semicontinuity, and furnishing in this way a concept of lower semicontinuous regularization for mappings taking their values in a complete lattice. The results obtained in the present work subsume the standard ones when the target space is finite dimensional. In particular, we recapture the scalar case with a new flexible proof. In addition, extensions of usual operations of lower and upper limits for vector-valued mappings are explored. The main result is finally applied to obtain a continuous D.C. decomposition of continuous D.C. mappings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.