Cyclic voltammetry of phosphafulvene and dibenzophosphafulvene shows that in DMF these compounds are reduced at -1.200 and -1.349 V, respectively. The EPR spectra of the corresponding radical anions, formed by electrochemical reduction or by reaction on a potassium mirror, are Recorded between 110 K and room temperature. The g and 31P hyperfine tensors are measured and compared to those previously obtained for a phosphaalkene radical anion. Abinitio investigations on model phosphaalkene and phosphafulvene radical anions show that, in accord with the experimental results, the electronic structure of these two species are quite different: whereas the unpaired electron is delocalized on the whole PC(H)R moiety in the phosphaalkenic anion, it is markedly localized on the phosphorus atom in the phosphafulvene anion. Calculated spin densities and charge distributions for phosphafulvene and azafulvene anions are compared
Phosphaalkene Derivatives of Furan and Thiophene: Synthesis, Crystal Structure, Electrochemistry and EPR Study of Their Radical Anions.-The title compounds (I) undergo quasi-reversible reduction. The radical anions can be generated chemically by reaction at 255 K with a potassium mirror. The EPR study is carried out both in the liquid and solid state. Quantum mechanic calculations are performed. -(JOUAITI, A.; AL BADRI, A.; GEOFFROY, M.; BERNARDINELLI, G.; J.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.