<p>The denoising of electrocardiogram (ECG) represents the entry point for the processing of this signal. The widely algorithms for ECG denoising are based on discrete wavelet transform (DWT). In the other side the performances of denoising process considerably influence the operations that follow. These performances are quantified by some ratios such as the output signal on noise (SNR) and the mean square error (MSE) ratio. This is why the optimal selection of denoising parameters is strongly recommended. The aim of this work is to define the optimal wavelet function to use in DWT decomposition for a specific case of ECG denoising. The choice of the appropriate threshold method giving the best performances is also presented in this work. Finally the criterion of selection of levels in which the DWT decomposition must be performed is carried on this paper. This study is applied on the electromyography (EMG), baseline drift and power line interference (PLI) noises.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.