Abstract. In this article we are particularly interested in optimizing the assignment of containers of different sizes to wagons on a train while respecting the business constraints. We present a model of the problem based on Constraint Programming (CP) techniques.
MiniZinc is a solver-independent constraint modeling language which is increasingly used in the constraint programming community. It can be used to compare different solvers which are currently based on either Constraint Programming, Boolean satisfiability, Mixed Integer Linear Programming, and recently Local Search. In this paper we present a stochastic continuous optimization backend for MiniZinc models over real numbers. More specifically, we describe the translation of FlatZinc models into objective functions over the reals, and their use as fitness functions for the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) solver. We illustrate this approach with the declarative modeling and solving of hard geometrical placement problems, motivated by packing applications in logistics involving mixed square-curved shapes and complex shapes defined by Bézier curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.