Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
We introduce and study the notion of almost L-Dunford-Pettis sets in Banach lattices and we give some characterizations of it in terms of sequences. As an application, we establish new properties of almost Dunford-Pettis completely continuous operators. Finally, by introducing the concept of aL-Dunford-Pettis property in Banach lattices, we investigate the weak compactness of almost Dunford-Pettis completely continuous operator.
In this paper, we introduce and study the concept of L-Dunford-Pettis sets and L-Dunford-Pettis property in Banach spaces. Next, we give a characterization of the L-Dunford-Pettis property with respect to some well-known geometric properties of Banach spaces. Finally, some complementability of operators on Banach spaces with the L-Dunford-Pettis property are also investigated.
In this paper, we study the notion of V-sets in Banach spaces and Banach lattices, and we give some characterizations of it in terms of sequences. As an application, we establish new properties of unconditionally converging operators and 1-Schur property in Banach lattices. Next, by introducing the concept of the property (V LD) in Banach spaces, we investigate the Dunford-Pettis completely continuous property of unconditionally converging operator. Finally, we derive the relationships between the property (V LD) and the relatively compact Dunford-Pettis property (resp., the Pelczynski's property (V )), and we deduce some examples of Banach spaces with the property (V LD).У цiй роботi ми вивчаємо поняття V-множин у банахових просторах та банахових ґратках та даємо деякi їхнi характеристики у термiнах послiдовностей. Як застосування, ми встановлюємо новi властивостi безумовно збiжних операторiв i властивiсть 1-Шура в банахових ґратках. Далi, вводячи поняття (V LD) властивостi у банахових просторах, ми дослiджуємо властивiсть цiлковитої неперервностi Данфорда-Петтiса безумовно збiжного оператора. Нарештi, ми виводимо зв'язки мiж (V LD) властивiстю i властивiстю вiдносної компактностi Данфорда-Петтiса (вiдповiдно, властивiстю Пельчинського (V )), i виводимо деякi приклади банахових просторiв iз (V LD) властивiстю. 2020 Mathematics Subject Classification. 46A40, 46B40.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.