The first step in automatic supervision, condition monitoring and fault detection of photovoltaic system is recognition, exploration and classification of all possible faults that maybe happen in the system. This paper aims to perceive, classified, simulate and discus all electrical faults in DC side of photovoltaic system, regarding electrical voltage and current inspections. For that, simplified hybrid model of photovoltaic panel in MATLAB environment is used. Investigation and classification of each type of faults is down and the effects of the faults are illustrated in this paper. Flash test are applied to improved electrical model. Current-Voltage curves signature are interpreted and investigated in simulation environment.
In this paper, a robust controller for attitude stabilization of a small quadrotor helicopter is developed. The TS (Takagi-Sugeno) fuzzy model approach and the [Formula: see text] robust control are combined to produce the proposed algorithm. Besides, disturbances and parametric uncertainties are considered. First, the nonlinear model of the vehicle is linearized around several operating points to obtain the representation of a TS fuzzy model, which represents the nonlinearity of the system dynamics. Then, a robust fuzzy controller is synthesized which guarantees desired control performances. The given controller is designed using numerical tools such as linear matrix inequalities (LMI). Finally, simulation results and real-time experiments are presented to validate the performance of the proposed scheme to robustly stabilize the quadrotor dynamics at the desired reference.
The robust $$H_\infty$$
H
∞
observer-based control design is addressed here for non-linear Takagi-Sugeno (T-S) fuzzy systems with time-varying delays, subject to uncertainties and external disturbances. This is motivated by the quadruple-tank with time delay control problem. The observer design methodology is based on constructing an appropriate Lyapunov–Krasovskii functional (LKF) for an augmented system formed from the original and the delayed states. The bilinear terms are transferred to the linear matrix inequalities, thanks to a change of variables which can be solved in one step. Furthermore, by employing the $$\mathcal {L}_2$$
L
2
performance index, the adverse effects of persistent bounded disturbances is largely avoided. The proposed method has the advantage of relating the controller and Lyapunov function to both the original and delayed states. Then, the controller and observer gains are obtained simultaneously by solving these inequalities with off-the-shelf software (Yalmip/MATLAB toolbox). Finally, an application to a simulated quadruple-tank system with time delay is carried out to demonstrate the benefits of the proposed technique, showing a compromise between controller simplicity and robustness that outperforms previous approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.