In this paper we describe a new approach for determining time-varying minimum variance hedge ratio in stock index futures markets by using Markov Regime Switching (MRS) models. The rationale behind the use of these models stems from the fact that the dynamic relationship between spot and futures returns may be characterized by regime shifts, which, in turn, suggests that by allowing the hedge ratio to be dependent upon the "state of the market," one may obtain more efficient hedge ratios and hence, superior hedging performance compared to other methods in the literature. The performance of the MRS hedge ratios is compared to that of alternative models such as GARCH, Error Correction and OLS in the FTSE 100 and S&P 500 markets. In and out-of-sample tests indicate that MRS hedge ratios outperform the other models in reducing portfolio risk This paper has largely benefited from the helpful comments of the Editor and an anonymous referee. Thanks are also due to Gordon Gemmill for his useful feedback on an earlier version of the paper. in the FTSE 100 market. In the S&P 500 market the MRS model outperforms the other hedging strategies only within sample. Overall, the results indicate that by using MRS models market agents may be able to increase the performance of their hedges, measured in terms of variance reduction and increase in their utility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.