In the new decade, green investment decisions are attracting more interest in design supply chains due to the hidden economic benefits and environmental legislative barriers. In this paper, a supply chain network design problem with both economic and environmental concerns is presented. Therefore, a multiobjective optimization model that captures the trade-off between the total logistics cost and CO 2 emissions is proposed. With regard to the complexity of logistic networks, a new multiobjective swarm intelligence algorithm known as a multiobjective Gravitational search algorithm (MOGSA) has been implemented for solving the proposed mathematical model. To evaluate the effectiveness of the model, a comprehensive set of numerical experiments is explained. The results obtained show that the proposed model can be applied as an effective tool in strategic planning for optimizing cost and CO 2 emissions in an environmentally friendly automotive supply chain.
With regard to environmental pressures and economic benefits, some original construction equipment manufacturers, have focused on collecting and recovering construction machinery at the end of their life. The present study aimed to focus on Sustainable closed-loop supply chain network optimization for construction machinery recovering. To this purpose, different recovery options such as remanufacturing, recycling and reusing were implemented. A mixed integer linear programming model (MILP) including three objective functions was proposed in this regard. Based on the model, all three dimensions of sustainability including economic, environmental, and social dimensions were considered and could successfully determine the optimal values of the flow of used products, remanufactured products, recycled parts, re-usable parts. In order to demonstrate the applicability of the proposed model, a numerical example was used with the help of GAMS software to obtain the supply chain structure with the lowest cost and reduce the pollution caused by CO 2 . Finally, the model could maximize fixed and variable job opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.