Near infrared (NIR)-emitting persistent luminescent nanoparticles (PLNPs) have great potential for in vivo bioimaging with the advantages of no need for in situ excitation, high signal-to-noise ratio, and deep tissue penetration. However, functional NIR-emitting PLNPs with long afterglow for long-term in vivo imaging are lacking. Here, we show the synthesis of NIR-emitting long-persistent luminescent nanoparticles (LPLNPs) Zn2.94Ga1.96Ge2O10:Cr(3+),Pr(3+) by a citrate sol-gel method in combination with a subsequent reducing atmosphere-free calcination. The persistent luminescence of the LPLNPs is significantly improved via codoping Pr(3+)/Cr(3+) and creating suitable Zn deficiency in zinc gallogermanate. The LPLNP powder exhibits bright NIR luminescence in the biological transparency window with a superlong afterglow time of over 15 days. A persistent energy transfer between host and Cr(3+) ion in the LPLNPs is observed and its mechanism is discussed. PEGylation greatly improves the biocompatibility and water solubility of the LPLNPs. Further bioconjugation with c(RGDyK) peptide makes the LPLNPs promising for long-term in vivo targeted tumor imaging with low toxicity.
The development of multimodal nanoprobes that combined properties of near-infrared (NIR) fluorescence and magnetic resonance imaging (MRI) within a single probe is very important for medical diagnosis. The NIR-emitting persistent luminescent nanoparticles (PLNPs) are ideal for optical imaging owing to no need for in situ excitation, the absence of background noise, and deep tissue penetration. However, no PLNP based multimodal nanoprobes have been reported so far. Here, we report a novel multimodal nanoprobe based on the gadolinium complexes functionalized PLNPs (Gd(III)-PLNPs) for in vivo MRI and NIR luminescence imaging. The Gd(III)-PLNPs not only exhibit a relatively higher longitudinal relaxivity over the commercial Gd(III)-diethylenetriamine pentaacetic acid complexes but also keep the superlong persistent luminescence. The prepared Gd(III)-PLNPs multimodal nanoprobe offers great potential for MRI/optical imaging in vivo.
Dual-functional nanoparticles with near-infrared (NIR) persistent luminescence and sun-light photocatalytic activity are highly desired for medical diagnosis and environmental protection. Here, we report a facile one-step method for simultaneous enhancement of persistent luminescence and photocatalytic activity of the dual-functional persistent luminescent nanoparticles (PLNPs). The Bi 3+ , Cr 3+ co-doped ZnGa 2 O 4 PLNPs, which were less than 10 nm in size, were synthesized by an ethylene glycolassisted hydrothermal method. The persistent luminescence and the photocatalytic activity of the PLNPs were significantly and simultaneously improved via additional doping of Bi 3+ in ZnGa 2 O 4 :Cr. The prepared dual-functional PLNPs have great potential in pollutant photo-degradation and long-term imaging in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.