The early transfusion of plasma is important to ensure optimal survival of patients with traumatic hemorrhage. In military and remote or austere civilian settings, it may be impossible to move patients to hospital facilities within the first few hours of injury. A dried plasma product with reduced logistical requirements is needed to enable plasma transfusion where medically needed, instead of only where freezers and other equipment are available. First developed in the 1930s, pooled lyophilized plasma was widely used by British and American forces in WWII and the Korean War. Historical dried plasma products solved the logistical problem but were abandoned because of disease transmission. Modern methods to improve blood safety have made it possible to produce safe and effective dried plasma. Dried plasma products are available in France, Germany, South Africa, and a limited number of other countries. However, no product is available in the US. Promising products are in development that employ different methods of drying, pathogen reduction, pooling, packaging, and other approaches. Although challenges exist, the in vitro and in vivo data suggest that these products have great potential to be safe and effective. The history, state of the science, and recent developments in dried plasma are reviewed.
Squamous cell carcinoma (SCC) is the most common cancer worldwide. The treatment of locally advanced disease generally requires various combinations of radiotherapy, surgery, and systemic therapy. Despite aggressive multimodal treatment, most of the patients relapse. Identification of molecules that sustain cancer cell growth and survival has made molecular targeting a feasible therapeutic strategy. Survivin is a member of the Inhibitor of Apoptosis Protein (IAP) family, which is overexpressed in most of the malignancies including SCC and totally absent in most of the normal tissues. This feature makes survivin an ideal target for cancer therapy. It orchestrates several important mechanisms to support cancer cell survival including inhibition of apoptosis and regulation of cell division. Overexpression of survivin in tumors is also associated with poor prognosis, aggressive tumor behavior, resistance to therapy, and high tumor recurrence. Various strategies have been developed to target survivin expression in cancer cells, and their effects on apoptosis induction and tumor growth attenuation have been demonstrated. In this review, we discuss recent advances in therapeutic potential of survivin in cancer treatment.
Background A carboxypeptidase protein called ACE2 is found in many organs. ACE2 protein can play a pivotal role to regulate the pathological changes of several diseases including COVID-19. TMPRSS2 gene is expressed in many human tissues and plays a critical role in spreading the infection of the viruses including coronavirus and progression of prostate cancer, and hence could be used as a potential drug target. There are limited reports on occurrence of genetic polymorphism of ACE2 and TMPRSS2 in general population, expressions in pathological conditions, and its impact on COVID-19 disease. Hence we comprehended the occurrence of ACE2, TMPRSS2 polymorphism in general population, expression in various diseases and its impact on COVID-19 disease. Method We utilized multiple databases, PubMed (Medline), EMBASE and Google Scholar for literature search. Description ACE2 polymorphisms have significant linkages with various diseases, including severity of SARS-CoV-2 infection. Genetic variations of these genes contribute to individual's genetic susceptibility to viral infection and its subsequent clearance. The diversity and variations in the population distribution of these genes, might greatly influence and in turn reflect into the observed population and gender differences of the severity and clinical outcomes of SARS-CoV-2 infection. Conclusion There are diversities in distribution of ACE2 and TMPRSS2 polymorphisms among different populations. Analyzing the genetic variants and expression of ACE2 and TMPRSS2 genes, in a population may provide the genetic marker for susceptibility or resistance against the coronavirus infection, which might be useful for identifying the susceptible population groups for targeted interventions and for making relevant public health policy decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.