Modern dentistry emphasizes the importance of dental plaque control to improve oral health. The use of oral care formulations with antiplaque biocides plays a crucial role in patient-directed approaches for plaque control. The antiplaque efficacies of these formulations have been extensively studied in many long-term clinical studies designed in accordance with well-accepted guidelines. The results from these studies conclusively demonstrate that long-term use of oral care formulations with well-known antiplaque biocides such as chlorhexidine and triclosan reduce supragingival plaque and gingivitis. This review summarizes microbiological results from clinical studies conducted with oral care formulations containing antiplaque biocides. Results from a number of long-term clinical studies conducted under real-life use conditions indicate no adverse alterations in the bacteria found in dental plaque or emergent microbial resistance. Additionally, microbial sampling of dental plaque subsequent to extended use of antiplaque biocides reveals no increase in resistant microflora. Large numbers of common oral bacteria isolated from patients using chlorhexidine indicate no increase in microbial resistance to chlorhexidine or to commonly used antibiotics. The effects of antiplaque biocides containing oral care formulations on dental plaque that exists naturally as a biofilm are examined. These formulations contain biocide, surfactants, polymers and other components that are effective against the biofilm. In summary, the results of studies on the real-life use of oral care formulations with antiplaque biocides show no emergence of resistant microflora or alterations of the oral microbiota, while such formulations have been found to provide the benefits of reducing plaque and gingivitis.
Triclosan (2,4,4',-trichloro-2'-hydroxydiphenylether) is a well-known and widely used nonionic antibacterial agent which has recently been introduced in toothpastes and mouthrinses. The efficacy of triclosan-containing toothpaste and mouthrinse to reduce both plaque and gingivitis in long-term clinical trials has been well documented. Until recently, it was generally assumed that triclosan's effect on gingival inflammation was due to its antimicrobial and anti-plaque effect. It has now become apparent that triclosan may have a direct anti-inflammatory effect on the gingival tissues. Several in vitro studies were conducted to evaluate the effect of triclosan on 4 primary enzymes of the pathways of arachidonic acid metabolism, cyclo-oxygenase 1, cyclo-oxygenase 2, 5-lipoxygenase and 15-lipoxygenase. These pathways lead to the production of known mediators of inflammation such as the prostaglandins, leukotrienes and lipoxins. Triclosan inhibited both cyclooxygenase 1 and cyclo-oxygenase 2 with IC-50 values of 43 microM and 227 microM, respectively. Triclosan also inhibited 5-lipoxygenase with an IC-50 of 43 microM. The 15-lipoxygenase was similarly inhibited by triclosan with an IC-50 of 61 microM. Hence, triclosan has the ability to inhibit both the cyclo-oxygenase and lipoxygenase pathways of arachidonic acid metabolism with similar efficacy. In cell culture experiments, it was found that triclosan inhibited IL-1 beta induced prostaglandin E2 production by human gingival fibroblasts in a concentration dependent manner, and at relatively low concentrations. These data, taken together, indicate that triclosan can inhibit formation of several important mediators of gingival inflammation.(ABSTRACT TRUNCATED AT 250 WORDS)
Although there is no doubt that gingivitis can develop in the absence of supragingival calculus, it is not clear to what extent the presence of mineralized deposit enhances gingival inflammation. Partial inhibition of plaque mineralization can be accomplished by chemical agents, but there has been no demonstration in humans of a reduction in gingivitis. It remains to be established what level of inhibition (if any) is required to have more than a cosmetic effect. Since the accepted scenario is that apical growth of supragingival plaque precedes the formation of subgingival calculus, there is no longer an issue of whether subgingival calculus is the cause or the result of periodontal disease. Subgingival mineralization results from the interaction of subgingival plaque with the influx of mineral salts that is part of the serum transudate and inflammatory exudate. This chronology, however, should not be the basis for relegating calculus to the ash heap. Morphologic and analytical studies point to the porosity of calculus and retention of bacterial antigens and the presence of readily available toxic stimulators of bone resorption. When coupled with the increased build up of plaque on the surface of the calculus, the combination has the potential for extending (beyond that of plaque alone) the radius of destruction and the rate of displacement of the adjacent junctional epithelium. The centrality of thorough scaling and root planing in the successful maintenance of periodontal health supports the view that subgingival calculus contributes significantly to the chronicity and progression of the disease, even if it can no longer be considered as responsible for initiation.
This presentation provides an overview of the technologies available for the chemical control of plaque. It is generally accepted that the formation of dental plaque at the interfaces of tooth/gingiva is one of the major causes of gingival inflammation and dental caries. Several therapeutic approaches have been used to control dental plaque and supragingival infections. These include fluoride preparations such as stannous fluoride, oxygenating agents, anti-attachment agents, and cationic and non-cationic antibacterial agents. Among the fluoride preparations, stable stannous fluoride pastes and gels have been shown to reduce supragingival plaque, gingivitis, hypersensitivity and caries. The effect of the oxygenating agents on the supragingival plaque has been equivocal, but recent data indicate that a stable agent which provides sustained active oxygen release is effective in controlling plaque. A polymer, PVPA, which reduced attachment of bacteria to teeth was shown to significantly reduce plaque formation in humans. A new generation of antibacterials includes non-ionics such as triclosan, which in combination with a special polymer delivery system, has been shown to reduce plaque, gingivitis, supragingival calculus and dental caries in long-term studies conducted around the world. Unlike the first generation of agents, the triclosan/copolymer/sodium fluoride system is effective in long-term clinicals and does not cause staining of teeth, increase in calculus, or disturbance in the oral microbial ecology.
Salifluor (5-n-octanoyl-3'-trifluoromethyl-salicylanilide), a broad spectrum antimicrobial agent, was investigated for its ability to inhibit dental plaque formation. A combination of salifluor with PVM/MA copolymer and NaF was optimized for its antiplaque effect in mouthrinse and dentifrice formulations based on a series of both laboratory and clinical studies. It was found that salifluor, a highly hydrophobic compound, could not be adequately solubilized with the conventional amount of sodium lauryl sulfate (SLS), the most commonly used anionic surfactant in oral hygiene products. However, it was possible to prepare stable mouthrinse formulations using a mixed surfactant system containing both anionic and nonionic surfactants. The most suitable mixture was found to be a combination of SLS, Pluronic and Tauranol in a proportion of 1:1:1. This combination provided adequate stability and high antimicrobial activity as determined by in vitro microbiological tests. Addition of a PVM/MA copolymer to the formulation improved the adsorption and retention of salifluor on stimulated tooth surfaces in vitro (saliva coated hydroxyapatite disks) by almost two-fold and also increased the antiplaque efficacy in both laboratory and human clinical studies. It was also found that a non fluoride dentifrice containing a combination of salifluor and PVM/MA copolymer with a dicalcium phosphate dihydrate abrasive, was highly effective in reducing smooth surface and fissure caries in rats. The results of the present studies demonstrated that salifluor is an effective antiplaque agent in mouthrinse and dentifrice when carefully formulated to maximize its delivery and bioavailability on oral surfaces. They also illustrated the difficulties encountered in exploiting the antimicrobial efficacy of highly hydrophobic, nonionic antimicrobial agents such as salifluor in commonly used oral hygiene vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.