Deepwater lobes constitute a significant volume of submarine fans and are primarily believed to exhibit a simple sheet geometry. However, recent studies interpret the geometries of these deep-marine lobes as distinct with respect to the complexity of the facies and their distribution. Hence, a conceptual model of deep-marine sediments is essential to discuss the deep-marine sediments associated with the fan and lobe architecture. The present study highlights the facies heterogeneity and distribution of various lobe elements at a multiscale level by considering a case study of the West Crocker Formation of Sabah in northwest Borneo. The formation was logged on a bed-to-bed scale from recently well-exposed sections, with a total vertical thickness of more than 300 m. The lithological characteristics, bed geometry, sedimentary textures and structures of individual beds were used to categorize the rock units into nine sedimentary lithofacies: five sandstone lithofacies (S1–S5), one hybrid bed facies (H), two siltstone facies (Si1 and Si2) and one shale or mudstone facies (M). These facies were grouped into four facies associations (FA1–FA4), which were interpreted as lobe axis (FA1), lobe off-axis (FA2), lobe fringe (FA3) and distal fringe to interlobe (FA4) facies associations. This study is applicable for the distribution of lobes and their subseismic, multiscale complexities to characterize the potential of hydrocarbon intervals in deep-marine sand-shale system around the globe.
The Belaga Formation of the Rajang Group or Rajang Fold and Thrust Belt (Late Cretaceous to Late Eocene) is mostly exposed in Sibu Zone along with some exposures in the Miri Zone of Central Sarawak. This entire turbiditic sequence was believed to have been deposited in a deep marine environment in a basin having an overall passive margin setting, that is, the Rajang Sea. However, the Eocene age‐related stratigraphic record of this group (including Bawang Member) is much more complex, due to the complicated geological and tectonic settings which prevailed during their deposition. Here, we present field observations along with the application of various geochemical proxies and their constraints for the understanding of provenance, palaeo‐weathering, and tectonic evolution of the area during the deposition of Bawang turbidites. Based on field observation, it has been found that this member consists of four main lithofacies, including massive sandstone facies (MSF), thick‐bedded facies (TBF), heterolithic facies (HF), and mud facies (MF). Using geochemical data, chemical weathering indices (CIA and CIW) values and A‐CN‐K plot show that the source area for Bawang turbidites has undergone a moderate to an intense degree of chemical weathering and was influenced by the recycling effect. The slight depletion in sandstones and shales for Cr, Ni, and V values is consistent with the felsic dominated source region; however, La/Sc versus Co/Th and La/Th versus Hf plots show a mixed source (felsic and intermediate volcanic source) with some input of recycled sediments from the older sedimentary to metasedimentary rocks. Various geochemical ratios and discriminant diagrams verify that the Schwaner Mountains and its metamorphic group of rocks were the principal provenances for these sediments, along with some input from West Borneo. The results of the geochemical analysis also show that Bawang turbidite sediments were deposited in a basin associated with an initial active continental margin setting and the basin was shifting towards a passive setting (Late Eocene–Oligocene). The volcanic input in Bawang Member during the Late Eocene also suggests the involvement of some subsequent possible arc setting around the “Bawang subbasin”.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.