Using the ABAQUS software, this article presents a numerical investigation on the effects of various stud distributions on the behavior of composite beams. A total of 24 continuous 2-span composite beam samples with a span length of 1 m were examined (concrete slab at the top and steel I-section at the bottom). The concrete slab used is made of a reactive powder concrete with a compressive strength of 100.29 MPa. The total depth of each sample was 0.220 m. The samples were separated into four groups. The first group involved 6 specimens with shear connectors distributed into 2 rows with different distances (65, 85, 105, 150, 200, and 250 mm). The second group had the same spacing of shear connectors as the first group except that the shear connectors were distributed with one row along the longitudinal axis. The third group consisted of six specimens with single and double shear connectors distributed along the longitudinal axis. The fourth group included six specimens with one row of shear connectors arranged in a staggered distribution along the longitudinal axis. Results show that the optimum spacing was 105 mm in all groups and the deflection in group four fluctuated up and down due to the non-symmetrical distribution of the shear connectors.
Geotextile reinforcement techniques have been widely used in paving works around the world and have proven to be effective in improving pavement performance. This study has focused on using different positions and numbers of geotextile reinforcement sheets between the layers of flexible pavement for rutting reduction. Fitting depth was measured in the field at seven constructed sections of the pavement of the road model. Each section has been strengthened with different reinforcement approaches. All road sections were subjected to a maximum load repetition of 10,000 cycles. The results indicate that using three layers of geotextile beneath each course of the designed road pavement sections (surface, binder, and base) reduced rutting by 96%. Traffic benefit ratio (TBR) has been employed in this study to reveal the behavior of geotextile reinforcement in increasing the service life of the road. TBR values are the load cycling ratio between the reinforced and unreinforced section for the exact recorded rut depth, it has been found to be minimally equal to 4 for the case of using one layer of reinforcement at interface I, and that value keeps growing up for other reinforcement cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.