Using the ABAQUS software, this article presents a numerical investigation on the effects of various stud distributions on the behavior of composite beams. A total of 24 continuous 2-span composite beam samples with a span length of 1 m were examined (concrete slab at the top and steel I-section at the bottom). The concrete slab used is made of a reactive powder concrete with a compressive strength of 100.29 MPa. The total depth of each sample was 0.220 m. The samples were separated into four groups. The first group involved 6 specimens with shear connectors distributed into 2 rows with different distances (65, 85, 105, 150, 200, and 250 mm). The second group had the same spacing of shear connectors as the first group except that the shear connectors were distributed with one row along the longitudinal axis. The third group consisted of six specimens with single and double shear connectors distributed along the longitudinal axis. The fourth group included six specimens with one row of shear connectors arranged in a staggered distribution along the longitudinal axis. Results show that the optimum spacing was 105 mm in all groups and the deflection in group four fluctuated up and down due to the non-symmetrical distribution of the shear connectors.
Sustainability and reducing environmental damage caused by CO2 emissions have become issues of interest to researchers in the construction sector around the world. Reducing the cement content in concrete by partially substituting it with by-products or waste falls within this field as the cement industry is responsible for 7% of global CO2 emissions. On the other hand, self-compacting concrete (SCC) is one of the special types of concrete that contains a large amount of powder (most of which is cement) to ensure its flow under the influence of its weight without separating its components. Therefore, to produce eco-friendly SCC, many researchers have replaced part of the cement with clay brick waste powder (CBWP) since brick units are among the most widely used building materials after concrete. Accordingly, this study aims to review previous research that included using CBWP in SCC. The effect of these wastes on the fresh, mechanical, durability and microstructural properties of cement was reviewed. Additionally, a comparison between the environmental impacts of SCCs with different CBWP contents has been conducted using the life cycle assessment (LCA) approach. It was found that the highest value of CBWP that can be used without negatively affecting the different properties of concrete is 10% by weight of cement. Moreover, regarding environmental impact, using CBWP as a substitute for cement reduces environmental damage, and the lowest environmental impact that can be achieved per strength unit (MPa) is 37.5%.
Geotextile reinforcement techniques have been widely used in paving works around the world and have proven to be effective in improving pavement performance. This study has focused on using different positions and numbers of geotextile reinforcement sheets between the layers of flexible pavement for rutting reduction. Fitting depth was measured in the field at seven constructed sections of the pavement of the road model. Each section has been strengthened with different reinforcement approaches. All road sections were subjected to a maximum load repetition of 10,000 cycles. The results indicate that using three layers of geotextile beneath each course of the designed road pavement sections (surface, binder, and base) reduced rutting by 96%. Traffic benefit ratio (TBR) has been employed in this study to reveal the behavior of geotextile reinforcement in increasing the service life of the road. TBR values are the load cycling ratio between the reinforced and unreinforced section for the exact recorded rut depth, it has been found to be minimally equal to 4 for the case of using one layer of reinforcement at interface I, and that value keeps growing up for other reinforcement cases.
The difficulty of decomposing solid waste over time has made it a significant global problem because of its environmental impact and the need for large areas for disposal. Among these residues is the waste of the rendering mortar that is produced (falls to the ground) while applied to wall surfaces. The quantity of these materials may reach 200 to 500 g/m2. As a result of local urban development (in Iraq), thousands of tons of these wastes are produced annually. On the other hand, the emission of greenhouse gases in the cement industry has had a great environmental impact. One of the solutions to this problem is to reduce the cement content in the mix by replacing it with less emissive materials. Residues from other industries are considered a relatively ideal option due to their disposal on the one hand and the reduction of harmful emissions of the cement industry on the other hand. Therefore, this research aims to reuse rendering mortar waste powder (RMWP) as a possible alternative to cement in mortar. RMWP replaced the cement in proportions (0, 10, 15, 20, 25, and 30% by weight). The flow rate, flexural and compressive strengths, ultrasonic pulse velocity, bulk density, dynamic modulus of elasticity, electrical resistivity, and water absorption tests of the produced mortar were executed. Microstructural analysis of the produced mortar was also investigated. Results indicated that, for sustainable development, an eco-friendly mortar can be made by replacing cement with RMWP at a rate of 15%, resulting in a 17% decrease in compressive strength while maintaining or improving durability properties. Moreover, the microstructure became denser and more homogeneous in the presence of RMWP.
Carbon dioxide emissions are one of the problems that arouses the interest of scientists because of their harmful effects on the environment and climate. The construction sector, particularly the cement industry, is a significant source of CO2. On the other hand, solid waste constitutes a major problem facing governments due to the difficulty of decomposing it and the fact that it requires large areas for landfill. Among these wastes are LCD waste glass (WG) and used rope waste. Therefore, reusing these wastes, for example, in concrete technology, is a promising solution to reduce their environmental impact. Limited studies have dealt with the simultaneous utilization of glass waste as a substitute for cement and rope waste (nylon) fiber (WRF). Therefore, this study aimed to partially replace cement with WG with the addition of rope waste as fibers. Thirteen mixtures were poured: a reference mixture (without replacement or addition) and three other groups containing WG and WRF in proportions of 5, 15 and 25% by cement weight and 0.25, 0.5 and 0.75% by mortar weight, respectively. Flow rate, compression strength, flexural strength, dry density, water absorption, dynamic modulus of elasticity, ultrasonic pulse velocity and electrical resistivity were tested. The results indicate that the best ratio for replacing cement with WG without fibers was 5% of the weight of cement. However, using WRF increased the amount of glass replacement to 25%, with an improvement in strength and durability characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.