The successful management of mass casualty incidents (MCIs) requires standardization of planning, training, and deployment of response. Recent events in the United States, most importantly the Hurricane season in 2005, demonstrated a lack of a unified response plan at local, regional, state, and federal levels. A standard Israeli protocol for hospital preparedness for conventional MCIs, produced by the Office of Emergency Preparedness of the Israeli Ministry of Health, has been reviewed, modified, adapted, and tested in both drills and actual events at a large university medical center in the United States. Lessons learned from this process are herein presented as the10 most important steps (ie, Commandments) to follow when preparing hospitals to be able to respond to conventional MCIs. The standard Israeli emergency protocols have proved to be universally adaptable, flexible, and designed to be adapted by any healthcare institution, regardless of its size and location.
Twenty-one patients with long histories of failed treatment for pulmonary tuberculosis, most of whom were recalcitrant in taking medications, were treated on a primarily ambulatory basis with various antituberculosis drugs. Supervision ensured that medication was taken. Convenient, personalized, comprehensive medical care and social services were provided without cost to patients during the early phase of treatment. Management during the continuation phase was unsupervised. Fourteen patients had drug-resistant tuberculosis and 16 were either alcohol or opiate abusers. Treatment success was achieved in 19 of 21 patients with a mean follow-up of 26 months. Two patients failed to achieve a sputum-negative status for Mycobacterium tuberculosis.
The rapid spread of Zika virus represents a threat to public health and demands significant preparation from hospitals and health care systems. Establishment of procedures for the identification of cases of Zika virus infection is a fundamental aspect of response planning. We describe the steps taken in the development and implementation of a protocol for the diagnosis and management of suspected cases of Zika virus infection in a large academic medical center. (Disaster Med Public Health Preparedness. 2017;11:256-258)
In response to the rapid spread of novel coronavirus disease 2019 (COVID-19), health-care systems should establish procedures for early recognition and management of suspected or confirmed cases. We describe the various steps taken for the development, implementation, and dissemination of the interdisciplinary COVID-19 protocol at Jackson Health System (JHS), a complex tertiary academic health system in Miami, Florida. Recognizing the dynamic nature of COVID-19, the protocol addresses the potential investigational treatment options and considerations for special populations. The protocol also includes infection prevention and control measures and routine care for suspected or proven COVID-19 patients.
Over the course of the COVID-19 pandemic, SARS-CoV-2 variants of concern (VOCs) with increased transmissibility and immune escape capabilities, such as Delta and Omicron, have triggered waves of new COVID-19 infections worldwide, and Omicron subvariants continue to represent a global health concern. Tracking the prevalence and dynamics of VOCs has clinical and epidemiological significance and is essential for modeling the progression and evolution of the COVID-19 pandemic. Next generation sequencing (NGS) is recognized as the gold standard for genomic characterization of SARS-CoV-2 variants, but it is labor and cost intensive and not amenable to rapid lineage identification. Here we describe a two-pronged approach for rapid, cost-effective surveillance of SARS-CoV-2 VOCs by combining reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) and periodic NGS with the ARTIC sequencing method. Variant surveillance by RT-qPCR included the commercially available TaqPath COVID-19 Combo Kit to track S-gene target failure (SGTF) associated with the spike protein deletion H69-V70, as well as two internally designed and validated RT-qPCR assays targeting two N-terminal-domain (NTD) spike gene deletions, NTD156-7 and NTD25-7. The NTD156-7 RT-qPCR assay facilitated tracking of the Delta variant, while the NTD25-7 RT-qPCR assay was used for tracking Omicron variants, including the BA.2, BA.4, and BA.5 lineages. In silico validation of the NTD156-7 and NTD25-7 primers and probes compared with publicly available SARS-CoV-2 genome databases showed low variability in regions corresponding to oligonucleotide binding sites. Similarly, in vitro validation with NGS-confirmed samples showed excellent correlation. RT-qPCR assays allow for near-real-time monitoring of circulating and emerging variants allowing for ongoing surveillance of variant dynamics in a local population. By performing periodic sequencing of variant surveillance by RT-qPCR methods, we were able to provide ongoing validation of the results obtained by RT-qPCR screening. Rapid SARS-CoV-2 variant identification and surveillance by this combined approach served to inform clinical decisions in a timely manner and permitted better utilization of sequencing resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.