Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification.
The ever-changing global environment currently includes an increasing ambient temperature that can be a devastating stress for organisms. Plants, being sessile, are adversely affected by heat stress in their physiology, development, growth, and ultimately yield. Since little is known about the response of biochemical traits to high-temperature ambiance, we evaluated eight parental lines (five lines and three testers) and their 15 F1 hybrids under normal and high-temperature stress to assess the impact of these conditions over 2 consecutive years. The research was performed under a triplicate randomized complete block design including a split-plot arrangement. Data were recorded for agronomic, biochemical, and fiber quality traits. Mean values of agronomic traits were significantly reduced under heat stress conditions, while hydrogen peroxide, peroxidase, total soluble protein, superoxide dismutase, catalase (CAT), carotenoids, and fiber strength displayed higher mean values under heat stress conditions. Under both conditions, high genetic advance and high heritability were observed for seed cotton yield (SCY), CAT, micronaire value, plant height, and chlorophyll-a and b content, indicating that an additive type of gene action controls these traits under both the conditions. For more insights into variation, Pearson correlation analysis and principal component analysis (PCA) were performed. Significant positive associations were observed among agronomic, biochemical, and fiber quality-related traits. The multivariate analyses involving hierarchical clustering and PCA classified the 23 experimental genotypes into four groups under normal and high-temperature stress conditions. Under both conditions, the F1 hybrid genotype FB-SHAHEEN × JSQ WHITE GOLD followed by Ghuari-1, CCRI-24, Eagle-2 × FB-Falcon, Ghuari-1 × JSQ White Gold, and Eagle-2 exhibited better performance in response to high-temperature stress regarding the agronomic and fiber quality-related traits. The mentioned genotypes could be utilized in future cotton breeding programs to enhance heat tolerance and improve cotton yield and productivity through resistance to environmental stressors.
The development of high-yielding heat-tolerant cotton cultivars harboring plastic phenotypes across warming climatic regions is prime objectives of today’s cotton breeding programs. We evaluated eight parents and 15 F1 hybrids under normal and heat stress conditions. Agronomic and biochemical characters were analyzed using standard least square, correlation, principal component analysis (PCA), and hierarchical clustering. The results explained a significant reduction in all traits except hydrogen peroxide contents, catalase, and peroxidase activities with a prominent increase under heat stress. A significant positive correlation was observed among all agronomic and biochemical traits. POD was found to have a maximum positive correlation with CAT (0.947) and minimum with boll weight (0.050). PCA showed first two components accounting for 78.64% of the total variation, with 55.83% and 22.80% of the total variation, respectively. Based on multivariate analyses methods 23 genotypes have been placed in 3 groups: tolerant (cluster-3), moderately tolerant (cluster-2), and susceptible (cluster-1). In a general perspective hybrids have better performance across normal and heat stress supports the idea of hybrid adaptability across stress environments. In specific FH-458 × FH-313 cross performed best across both conditions for yield and physiological traits. Hence, the generated information from the present study would support breeders in developing heat-resilient cultivars to endure the prevailing extreme environmental conditions.
Abstract. We describe a new species of Halys Fabricius (Pentatomidae: Pentatominae: Halyini) based on morphological and DNA sequence data, and demonstrate the value of DNA sequences for taxonomic problems that are difficult to resolve on the basis of morphology alone. Halys sindillus Memon, Meier & Manan, sp.n. varies with regard to characters that are usually constant within the genus (spermathecal bulb of females; blade of male clasper; ratio between the second and third antennomeres; length of labium). The surprising levels of variation raised the question as to how many species were represented in three series of specimens from Pakistan. Because the morphological variability was largely continuous, we hypothesized the presence of one new species, and confirm this result here using sequence data from two mitochondrial markers. The data reveal very little molecular variation within the newly described species (COI: 730 bp: 0-0.16%; COI/tRNA Leu /COII: 563 bp: 0-0.36%), that is, morphology and DNA sequences show very different patterns of variability. The new species is compared with the closely related Halys sulcatus (Thunberg) whose sequences are distinctly different and whose spermathecal bulbs are largely invariable (I: 2.87-3.28%; II: 2.13-2.49%). We discuss the shortcomings of mitochondrial data in taxonomy and compare the genetic distances in Halys with frequency distributions of intra-and interspecific distances obtained for all 878 Hemiptera COI sequences in GenBank. We conclude that the observed distances for Halys are consistent with our taxonomic conclusions, thus demonstrating the usefulness of DNA sequences for Halys taxonomy. However, the observed overlap between intra-and interspecific sequence variability in Hemiptera is so wide that it questions the feasibility of approaches to taxonomy based predominantly on DNA sequences (e.g. DNA taxonomy, DNA barcoding).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.