Soil compaction causes substantial reduction in agriculture productivity and has always been of great distress for farmers. Intensive agriculture seems to be more crucial in causing compaction. High mechanical load, less crop diversification, intensive grazing, and irrigation methods lead to soil compaction. It is further exasperated when these factors are accompanied with low organic matter, animal trampling, engine vibrations, and tillage at high moisture contents. Soil compaction increases soil bulk density and soil strength, while decreases porosity, aggregate stability index, soil hydraulic conductivity, and nutrient availability, thus reduces soil health. Consequently, it lowers crop performance via stunted aboveground growth coupled with reduced root growth. This paper reviews the potential causes of compaction and its consequences that have been published in last two decades. Various morphological and physiological alterations in plant as result of soil compaction have also been discussed in this review.
Nitrogen (N) affects all levels of plant function from metabolism to resource allocation, growth, and development and Magnesium (Mg) is a macronutrient that is necessary to both plant growth and health. Radish (
Raphanus sati
vus L.) occupies an important position in the production and consumption of vegetables globally, but there are still many problems and challenges in its nutrient management. A pot trial was conducted to investigate the effects of nitrogen and magnesium fertilizers on radish during the year 2018–2019. Nitrogen and magnesium was applied at three rates (0, 0.200, and 0.300 g N kg
−1
soil) and (0, 0.050, and 0.100 g Mg kg
−1
soil) respectively. The experiment was laid out in a completely randomized design (CRD) and each treatment was replicated three times. Growth, yield and quality indicators of radish (plant height, root length, shoot length, plant weight, total soluble sugar, ascorbic acid, total soluble protein, crude fiber, etc.) were studied. The results indicated that different rates of nitrogen and magnesium fertilizer not only influence the growth dynamics and yields but also enhances radish quality. The results revealed that the growth, yield and nutrient contents of radish were increased at a range of 0.00 g N. kg
−1
soil to 0.300 g N. kg
−1
soil and 0.00 g Mg. kg
−1
soil to 0.050 g Mg. kg
−1
soil and then decreased gradually at a level of 0.100 g Mg. kg
−1
soil. In contrast, the crude fiber contents in radish decreased significantly with increasing nitrogen and magnesium level but increased significantly at Mg
2
level (0.050 g Mg. kg
−1
soil). The current study produced helpful results for increasing radish quality, decreasing production costs, and diminishing underground water contamination.
Anthropogenic activities and natural climate changes are the central driving forces of global ecosystems and agriculture changes. Climate changes, such as rainfall and temperature changes, have had the greatest impact on different types of plant production around the world. In the present study, we investigated the spatiotemporal variation of major crops (cotton, rice, wheat, and sugarcane) in the District Vehari, Pakistan, from 1984 to 2020 using remote sensing (RS) technology. The crop identification was pre-processed in ArcGIS software based on Landsat images. After pre-processing, supervised classification was used, which explains the maximum likelihood classification (MLC) to identify the vegetation changes. Our results showed that in the study area cultivated areas under wheat and cotton decreased by almost 5.4% and 9.1% from 1984 to 2020, respectively. Vegetated areas have maximum values of NDVI (> 0.4), and built-up areas showed fewer NDVI values (0 to 0.2) in the District Vehari. During the Rabi season, the temperature was increased from 19.93 °C to 21.17 °C. The average temperature was calculated at 34.28 °C to 35.54 °C during the Kharif season in the District Vehari. Our results showed that temperature negatively affects sugarcane, rice, and cotton crops during the Rabi season, and precipitation positively affects sugarcane, rice, and cotton crops during the Kharif season in the study area. Accurate and timely assessment of crop estimation and relation to climate change can give very useful information for decision-makers, governments, and planners in formulating policies regarding crop management and improving agriculture yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.