Nitrogen (N) affects all levels of plant function from metabolism to resource allocation, growth, and development and Magnesium (Mg) is a macronutrient that is necessary to both plant growth and health. Radish (
Raphanus sati
vus L.) occupies an important position in the production and consumption of vegetables globally, but there are still many problems and challenges in its nutrient management. A pot trial was conducted to investigate the effects of nitrogen and magnesium fertilizers on radish during the year 2018–2019. Nitrogen and magnesium was applied at three rates (0, 0.200, and 0.300 g N kg
−1
soil) and (0, 0.050, and 0.100 g Mg kg
−1
soil) respectively. The experiment was laid out in a completely randomized design (CRD) and each treatment was replicated three times. Growth, yield and quality indicators of radish (plant height, root length, shoot length, plant weight, total soluble sugar, ascorbic acid, total soluble protein, crude fiber, etc.) were studied. The results indicated that different rates of nitrogen and magnesium fertilizer not only influence the growth dynamics and yields but also enhances radish quality. The results revealed that the growth, yield and nutrient contents of radish were increased at a range of 0.00 g N. kg
−1
soil to 0.300 g N. kg
−1
soil and 0.00 g Mg. kg
−1
soil to 0.050 g Mg. kg
−1
soil and then decreased gradually at a level of 0.100 g Mg. kg
−1
soil. In contrast, the crude fiber contents in radish decreased significantly with increasing nitrogen and magnesium level but increased significantly at Mg
2
level (0.050 g Mg. kg
−1
soil). The current study produced helpful results for increasing radish quality, decreasing production costs, and diminishing underground water contamination.
Plastic waste has recently been identified as one of the most serious environmental issues, affecting all life forms, natural habitats, and the economy, and is one of the most serious global environmental problems, second only to climate change. Seeking alternative environmentally sustainable options, such as biodegradation instead of conventional disposal, is critical in the face of this challenge. However, there is currently a lack of information about the mechanisms and efficacy of plastic biodegradation. From this perspective, this study aims to illustrate the negative environmental impacts of the plastic waste. It also addresses the role of insects and gut microbiota in the degradation of plastics, emphasizing the important role they will play in the future.
Plant growth and productivity is restricted by a multitude of abiotic stresses. These stresses negatively affect physiological and metabolic pathways, leading to the production of many harmful substances like ROS, lipid peroxides and aldehydes. This study was conducted to investigate the role of Arabidopsis ALDH3I1 gene in multiple abiotic stress tolerance.• Transgenic tobacco plants were generated that overexpress the ALDH3I1 gene driven by the CaMV35S promoter and evaluated under different abiotic stresses, namely salt, drought, cold and oxidative stress. Tolerance to stress was evaluated based on responses of various growth and physiological traits under stress condition.• Transgenic plants displayed elevated ALDH3I1 transcript levels compared to WT plants. The constitutive ectopic expression of ALDH3I1 conferred increased tolerance to salt, drought, cold and oxidative stresses in transgenic plants, along with improved plant growth. Transgenic plants overexpressing ALDH3I1 had higher chlorophyll content, photosynthesis rate and proline, and less accumulation of ROS and malondialdehyde compared to the WT, which contributed to stress tolerance in transgenic plants. Our results further revealed that ALDH3I1 had a positive effect on CO 2 assimilation rate in plants under abiotic stress conditions.• Overall, this study revealed that ALDH3I1 positively regulates abiotic stress tolerance in plants, and has future implications in producing transgenic cereal and horticultural plants tolerant to abiotic stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.