Plastic waste poses a serious threat to the environment and it has been increasing at an alarming rate. In 2022, global plastic waste generation was reported to be around 380 million tonnes as compared to 353 million tonnes in 2019. Production of liquid fuel from plastic waste is regarded as a viable method for disposing of the plastic and utilizing its energy. Currently, a wide range of technologies have been explored for turning plastic waste into fuel, including the conventional pyrolysis, incineration, gasification and advanced oxidation. However, a systematic summary and comparative analysis of various technologies has still not reported. Traditional non-biodegradable plastic waste (NPW) treatment methods include landfilling and incineration, but these methods encounter bottlenecks and are unable to adequately address NPW issues. This review attempts to present a thorough summary of treatment methods for plastic waste (both conventional and novel treatment technologies that have recently been reported), examine their mechanism and their current state of development. Furthermore, the superiority and drawbacks of each technology are analysed and the prospects of technology application are proposed. By tackling the problems of white pollution and energy scarcity, this review intends to inspire the use of solid waste as a source of energy.
The increasing demand of energy has led to a chaos among the existing energy sources whether it may be thermal, nuclear, hydro or solar power. Hence, it becomes important for an alternate, feasible and sustainable energy source. Municipal solid waste (MSW) serves as an efficient and reliable option for the conversion of waste to energy since long. But the problem exists with the conversion technology which imposes restriction on its use. This paper discusses the different conversion technologies which include incineration, pyrolysis, gasification and biomethanation. The technologies are compared on various physical and chemical parameters with keen interest on environmental sustainability of the waste to energy (WtE) system. The evaluation results reveal that the biological methods are best suited for the waste to energy conversion with least degradation of the environment. Other methods such as incineration, pyrolysis and gasification are quite efficient and give a high yield but they harm the environment in the form of harmful gaseous emissions which certainly lead to global warming and greenhouse effect. This study can overall contribute to the development of more efficient and specific WtE technology which would help lower the MSW reaching the landfills generating cleaner energy to serve the future generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.